
Vision HDL Toolbox™

Reference

R2015a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Vision HDL Toolbox™ Reference
© COPYRIGHT 2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2015 Online only New for Version 1.0 (Release R2015a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Blocks — Alphabetical List
1

System Objects — Alphabetical List
2

Functions — Alphabetical List
3

1

Blocks — Alphabetical List

1 Blocks — Alphabetical List

1-2

Chroma Resampler
Downsample or upsample chrominance component

Library

visionhdlconversions

Description

The Chroma Resampler block downsamples or upsamples a pixel stream.

• Downsampling reduces bandwidth and storage requirements in a video system by
combining pixel chrominance components over multiple pixels. You can specify a filter
to prevent aliasing, by selecting the default filter or by entering coefficients.

• Upsampling restores a signal to its original rate. You can use interpolation or
replication to calculate the extra sample.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independent of image size and format, and to
connect easily with other Vision HDL Toolbox™ blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate the
validity of each pixel and the location of each pixel in the frame. Use the Frame to Pixels
block to convert a pixel matrix into a pixel stream and these control signals. For a full
description of the interface, see “Streaming Pixel Interface”.

The block accepts luma and chrominance components. The block does not modify the
luma component, and applies delay to align it with the resampled chrominance outputs.
The rate of the output luma component is the same as the input.

 Chroma Resampler

1-3

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single pixel in Y'CbCr color space,
specified as a vector of three
values. The data type of the output
is the same as the data type of the
input.

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Dialog Box and Parameters

Main

1 Blocks — Alphabetical List

1-4

Resampling
Resampling operation.

• 4:4:4 to 4:2:2 (default)
• 4:2:2 to 4:4:4

If you select 4:4:4 to 4:2:2, the block performs a downsampling operation. If you
select 4:2:2 to 4:4:4, the block performs an upsampling operation.

Antialiasing filter
Lowpass filter to follow a downsample operation.

• Auto (default)
• Property

• None

If you select Auto, the block uses a built-in lowpass filter. If you select Property, the
Horizontal filter coefficients parameter appears on the dialog box. If you select
None, the block does not filter the input signal. This parameter is visible when you
set Resampling to 4:4:4 to 4:2:2.

Horizontal filter coefficients
Coefficients for the antialiasing filter.

Enter the coefficients as a vector. The default is [0.2,0.6,0.2]. This parameter
is visible if you set Resampling to 4:4:4 to 4:2:2 and Antialiasing filter to
Property.

Interpolation
Interpolation method for an upsample operation.

• Linear (default)
• Pixel replication

If you select Linear, the block uses linear interpolation to calculate the missing
values. If you select Pixel replication, the block repeats the chrominance values
of the preceding pixel to create the missing pixel. This parameter is visible if you set
Resampling to 4:2:2 to 4:4:4.

 Chroma Resampler

1-5

Data Types

The parameters on this tab appear only when they are relevant. If your selections on the
Main tab configure the block so that no filter coefficients are needed, or no rounding or
overflow is possible, the irrelevant parameter is hidden.

Rounding Method
Rounding method for internal fixed-point calculations. Rounding Method appears
when you select linear interpolation, or include an antialiasing filter. The default is
Floor.

Overflow Action
Overflow action for internal fixed-point calculations. Overflow can occur when you
include an antialiasing filter. The default is Wrap.

Filter coefficients
Data type for the antialiasing filter coefficients.

The default is fixdt(1,16,0). This parameter is visible when you set Antialiasing
filter to Auto or Property.

1 Blocks — Alphabetical List

1-6

Algorithm

The default antialiasing filter is a lowpass filter. The passband occupies half of the
total bandwidth, which is sufficient to suppress any aliasing after 4:4:4 to 4:2:2
downsampling.

Whether you use the default filter or specify your own coefficients, the filter is
implemented in HDL using a fully parallel architecture.

The block uses symmetric padding to apply the filter to the pixels at the beginning and
end of lines. Also, if the frame is an odd number of pixels wide, the block symmetrically
pads the line. This accommodation makes the block more resilient to video timing
variation.

Latency

The latency is the number of cycles between the first valid input pixel and the first valid
output pixel. When you use an antialiasing filter, the latency depends on the size and
value of the filter coefficients.

Block Configuration Latency

Downsample (4:4:4 to 4:2:2), no filter 3
Downsample (4:4:4 to 4:2:2), with filter 4+N/2+FIR delay, N = number of filter

coefficients
Upsample (4:2:2 to 4:4:4), replication 3
Upsample (4:2:2 to 4:4:4), interpolation 5

For example, the latency for a downsample using the default filter is 30 cycles.

See Also
visionhdl.ChromaResampler | Chroma Resampling | Frame To Pixels

Introduced in R2015a

 Closing

1-7

Closing

Morphological close

Library

visionhdlmorph

Description

Closing is a morphological dilation operation, followed by a morphological erosion
operation, using the same neighborhood for both calculations. The block operates on a
stream of binary intensity values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independent of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate the
validity of each pixel and the location of each pixel in the frame. Use the Frame to Pixels
block to convert a pixel matrix into a pixel stream and these control signals. For a full
description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar binary value.

boolean

1 Blocks — Alphabetical List

1-8

Port Direction Description Data Type

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Dialog Box and Parameters

Neighborhood
Neighborhood, specified as a matrix or vector of ones and zeros.

The block supports neighborhoods up to 32×32 pixels. To use a structuring element,
specify the Neighborhood as getnhood(strel(shape)). The default is
[0,1,0;1,1,1;0,1,0].

Line buffer size
Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates neighborhood lines - 1-by-Line buffer size memory
locations to store the pixels. The default value is 2048.

 Closing

1-9

Algorithm

Latency

The total latency of the block is the line buffer latency plus the latency of the kernel
calculation. Closing is a compound operation. Therefore, this block contains a second line
buffer between the dilation kernel and the erosion kernel. Use the output control signals
to determine when the output pixels are valid.

See Also
visionhdl.Closing | Closing | Dilation | Erosion | Frame To Pixels | getnhood |
strel

Introduced in R2015a

1 Blocks — Alphabetical List

1-10

Color Space Converter

Convert color information between color spaces

Library

visionhdlconversions

Description

The Color Space Converter block converts between R'G'B' and Y'CbCr color spaces, and
also converts R'G'B' to intensity.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independent of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate the
validity of each pixel and the location of each pixel in the frame. Use the Frame to Pixels
block to convert a pixel matrix into a pixel stream and these control signals. For a full
description of the interface, see “Streaming Pixel Interface”.

Note: The Color Space Converter block operates on gamma-corrected color spaces.
However, to simplify use of the block, the block and mask labels do not include the prime
notation.

 Color Space Converter

1-11

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified by a
vector of three values representing
R'G'B' or Y'CbCr, or a scalar value
representing intensity. The data
type of the output is the same as
the data type of the input.

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Dialog Box and Parameters

Conversion
Conversion that the block performs on the input video stream.

• RGB to YCbCr (default)

1 Blocks — Alphabetical List

1-12

• YCbCr to RGB

• RGB to intensity

The block accepts input as a vector of three values representing a single pixel. If you
choose RGB to intensity, the output is a scalar value. Otherwise, the output is a
vector of three values.

Use conversion specified by
Conversion equation to use on the input video stream. This parameter does not apply
when you set Conversion to RGB to intensity.

• Rec. 601 (SDTV) (default)
• Rec. 709 (HDTV)

Scanning standard
Scanning standard to use for HDTV conversion. This parameter applies when you set
Use conversion specified by to Rec. 709 (HDTV).

• 1250/50/2:1 (default)
• 1125/60/2:1

Algorithm

Conversion Between R'G'B' and Y'CbCr Color Spaces

The following equations define R'G'B' to Y'CbCr conversion and Y'CbCr to R'G'B'
conversion:

¢È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+ ¥

¢

¢

¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Y

Cb

Cr

R

G

B

16

128

128

A

¢
¢
¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ¥

¢È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Ê

Ë

Á
Á

R

G

B

Y

Cb

Cr

B
16

128

128ÁÁ

ˆ

¯

˜
˜
˜

 Color Space Converter

1-13

The values in matrices A and B are based on your choices for the Use conversion
specified by and Scanning standard parameters.

Use conversion specified by = Rec. 709 (HDTV)Matrix Use conversion specified by =
Rec. 601 (SDTV) Scanning standard =

1125/60/2:1
Scanning standard =
1250/50/2:1

A 0 25678824 0 50412941 0 09790588

0 1482229 0 29099279 0 43921

. . .

. . .- - 5569

0 43921569 0 36778831 0 07142737. . .- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 0.18258588 0.61423059 0.06200706

 -0.10064373 -0.338557195 0.43921569

 0.43921569 -0.39894216 -0.04027352

ÈÈ

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 25678824 0 50412941 0 09790588

0 1482229 0 29099279 0 43921

. . .

. . .- - 5569

0 43921569 0 36778831 0 07142737. . .- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

B 1 1643836 0 1 5960268

1 1643836 0 39176229 0 81296765

1 164383

. .

. . .

.

- -

66 2 0172321 0.

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1.16438356 0 1.79274107

1.16438356 -0.21324861 -0.53290933

1.164338356 2.11240179 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 1643836 0 1 5960268

1 1643836 0 39176229 0 81296765

1 164383

. .

. . .

.

- -

66 2 0172321 0.

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Conversion from R'G'B' to Intensity

The following equation defines conversion from R'G'B' color space to intensity:

intensity = []
¢

¢

¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 299 0 587 0 114. . .

R

G

B

Data Types

For fixed-point and integer input, the block converts matrix A to fixdt(1,17,16), and
matrix B to fixdt(1,17,14).

For double or single input, the block applies the conversion matrices in double type, and
scales the Y'CbCr offset vector ([16,128,128]) by 1/255. The block saturates double or
single R'G'B' and intensity outputs to the range [0,1].

The Y'CbCr standard includes headroom and footroom. For 8-bit data, luminance values
16–235, and chrominance values 16–240, are valid. The Color Space Converter block pins
out-of-range input to these limits before calculating the conversion. The block scales the
offset vector and the allowed headroom and footroom depending on the word length of the
input signals. For example, when you convert a Y'CbCr input of type fixdt(0,10,0)
to R'G'B', the block multiplies the offset vector by 2(10 – 8) = 4. As a result, the valid
luminance range becomes 64–940 and the valid chrominance range becomes 64–960.

1 Blocks — Alphabetical List

1-14

Latency

Blocks with R'G'B' input have a latency of 9 cycles. Blocks with Y'CbCr input have a
latency of 10 cycles because one cycle is required to check for and correct headroom and
footroom violations.

See Also
visionhdl.ColorspaceConverter | Color Space Conversion | Frame To Pixels

Introduced in R2015a

 Demosaic Interpolator

1-15

Demosaic Interpolator

Construct RGB pixel data from Bayer pattern pixels

Library

visionhdlconversions

Description

The Demosaic Interpolator block provides a Bayer pattern interpolation filter for
streaming video data. The block implements the calculations using hardware-efficient,
multiplier-free algorithms for HDL code generation. You can select a low complexity
bilinear interpolation, or a moderate complexity gradient-corrected bilinear interpolation.

• When you choose bilinear interpolation, the block operates on a 3×3 pixel window
using only additions and bit shifts.

• When you choose gradient correction, the block operates on a 5×5 pixel window. The
calculation is performed using bit shift, addition, and low order Canonical Signed
Digit (CSD) multiplication.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independent of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate the
validity of each pixel and the location of each pixel in the frame. Use the Frame to Pixels
block to convert a pixel matrix into a pixel stream and these control signals. For a full
description of the interface, see “Streaming Pixel Interface”.

1 Blocks — Alphabetical List

1-16

Signal Attributes

Port Direction Description Data Type

pixel Input Single pixel, specified as a scalar
value.

• uint or int
• fixdt(0,N,0)

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

pixel Output Single pixel in RGB color space,
returned as a vector of three
values.

Same as the inputpixel

 Demosaic Interpolator

1-17

Dialog Box and Parameters

Interpolation algorithm
Algorithm the block uses to calculate the missing pixel values.

• Bilinear — Average of the pixel values in the surrounding 3×3 neighborhood.
• Gradient-corrected linear (default) — Bilinear average, corrected for

intensity gradient.

Sensor alignment
Color sequence of the pixels in the input stream.

Select the sequence of R, G and B pixels that correspond to the 2-by-2 block of pixels
in the top-left corner of the input image. Specify the sequence in left-to-right, top-to-
bottom order. For instance, the default RGGB represents an image with this pattern.

1 Blocks — Alphabetical List

1-18

Line buffer size
Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. When you select Bilinear interpolation, the block allocates 2-by-Line
buffer size memory locations. When you select Gradient-corrected linear
interpolation, the block allocates 4-by-Line buffer size memory locations. The
default value is 2048.

Algorithm

Interpolation

Bilinear Interpolation

The block interpolates the missing color values using a 3×3 neighborhood. The average
is calculated over the adjacent two pixels or four pixels, depending on the sensor color
pattern. The block implements this algorithm using only add and shift operations.

Gradient-Corrected Linear Interpolation

Gradient correction improves interpolation performance across edges by taking
advantage of the correlation between the color channels. The block calculates the missing
color values using bilinear interpolation, and then modifies the value corresponding
to the intensity gradient calculated over a 5×5 neighborhood. The block applies the
gradient correction using a fixed set of filter kernels. The filter coefficients were designed
empirically to perform well over a wide range of image data. The coefficients are
multiples of powers of two to enable an efficient hardware implementation. See [1].

Latency

The block buffers one line of input pixels before starting bilinear interpolation
calculations. The gradient correction calculation starts after the block buffers 2 lines.

The total latency of the block is the line buffer latency plus the latency of the kernel
calculation. Use the output control signals to determine when the output pixels are valid.

 Demosaic Interpolator

1-19

References

[1] Malvar, Henrique S., Li-wei He, and Ross Cutler. “High-Quality Linear Interpolation
for Demosaicing of Bayer-Patterned Color Images.” Microsoft Research, May
2004. http://research.microsoft.com/pubs/102068/Demosaicing_ICASSP04.pdf.

See Also
visionhdl.DemosaicInterpolator | Demosaic | Frame To Pixels

Introduced in R2015a

1 Blocks — Alphabetical List

1-20

Dilation

Morphological dilate

Library

visionhdlmorph

Description

Dilation replaces each pixel with the local minimum of the neighborhood around the
pixel. The block operates on a stream of binary intensity values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independent of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate the
validity of each pixel and the location of each pixel in the frame. Use the Frame to Pixels
block to convert a pixel matrix into a pixel stream and these control signals. For a full
description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar binary value.

boolean

 Dilation

1-21

Port Direction Description Data Type

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Dialog Box and Parameters

Neighborhood
Neighborhood, specified as a matrix or vector of ones and zeros.

The block supports neighborhoods up to 32×32 pixels. To use a structuring element,
specify the Neighborhood as getnhood(strel(shape)). The default is
ones(3,3).

Line buffer size
Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates neighborhood lines - 1-by-Line buffer size memory
locations to store the pixels. The default value is 2048.

1 Blocks — Alphabetical List

1-22

Algorithm

Latency

The total latency of the block is the line buffer latency plus the latency of the kernel
calculation. Use the output control signals to determine when the output pixels are valid.

See Also
visionhdl.Dilation | Dilation | Frame To Pixels | getnhood | strel

Introduced in R2015a

 Edge Detector

1-23

Edge Detector
Find edges of objects in image

Library

visionhdlanalysis

Description

Edge Detector finds the edges in a grayscale pixel stream using Sobel, Prewitt or Roberts
methods. The block convolves the input pixels with derivative approximation matrices to
find the gradient of pixel magnitude along two orthogonal directions. It then compares
the sum of the squares of the gradients to the square of a configurable threshold to
determine if the gradients represent an edge. The Sobel and Prewitt methods calculate
the gradient in horizontal and vertical directions. The Roberts method calculates the
gradients at 45 and 135 degrees.

By default, the block returns a binary image, as a stream of pixel values. If a pixel value
is 1, it is an edge. You can disable the edge output. You can optionally enable output of
the gradient values in the two orthogonal directions at each pixel.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independent of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate the
validity of each pixel and the location of each pixel in the frame. Use the Frame to Pixels
block to convert a pixel matrix into a pixel stream and these control signals. For a full
description of the interface, see “Streaming Pixel Interface”.

1 Blocks — Alphabetical List

1-24

Signal Attributes

Port Direction Description Data Type

pixel Input Single image pixel, specified as a
scalar value.

• uint or int
• fixdt()

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Th Input
(optional)

Threshold value that defines an
edge, specified as a scalar. The
block compares this value squared
to the sum of the squares of the
gradients.

• uint or int
• fixdt()

double and single data types
are supported for simulation but
not for HDL code generation.

Edge Output
(optional)

Pixel value indicating an edge at
this pixel, returned as a scalar
binary value.

boolean

Gv, Gh Output
(optional)

Vertical and horizontal gradient
values. These ports are visible
when you choose Sobel or Prewitt
method.

• uint or int
• fixdt()

double and single data types
are supported for simulation but
not for HDL code generation.

G45, G135 Output
(optional)

Orthogonal gradient values. These
ports are visible when you choose
Roberts method.

Same as Gv, Gh

ctrl Output Control signals describing the
validity of the pixel and the
location of the pixel within

pixelcontrol

 Edge Detector

1-25

Port Direction Description Data Type

the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

Dialog Box and Parameters

Method
Edge detection algorithm

Select Sobel, Prewitt, or Roberts method.
Output the binary image

Enable the Edge output port when selected

1 Blocks — Alphabetical List

1-26

When selected, the block returns a stream of binary pixels representing the edges
detected in the input frame. The default is selected. You must select at least one of
Output the binary image and Output the gradient components.

Output the gradient components
Enable the gradient output ports when selected

When selected, two output ports return values representing the gradients calculated
in the two orthogonal directions. The default is not selected. If you choose Sobel or
Prewitt algorithm, the output ports Gv and Gh appear on the block. If you choose
Roberts algorithm, the output ports G45 and G135 appear on the block.

You must select at least one of Output the binary image and Output the
gradient components.

Source of threshold value
Source for the gradient threshold value that indicates an edge

You can set the threshold from an input port or from the dialog box. The default
value is Property. If you select Input port, the Th port appears on the block icon.

Threshold value
Gradient threshold value that indicates an edge.

The block compares this value squared to the sum of the squares of the gradients.
The block casts this value to the data type of the gradients. The default value is 20.
This option is visible when you set Source of threshold value to Property.

Line buffer size
Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates (N - 1)-by-Line buffer size memory locations to
store the pixels, where N is the number of lines in the differential approximation
matrix. If you choose Sobel or Prewitt algorithm, N is 3. If you choose Roberts
algorithm, N is 2. The default value is 2048.

 Edge Detector

1-27

Data Types

Rounding Method
Rounding method for internal fixed-point calculations. The default is Floor.

Overflow Action
Overflow action for internal fixed-point calculations. The default is Wrap.

Gradient Data Type
Data type for the two gradient output ports.

If you enable gradient output ports on the Main tab, the Gradient Data Type
appears on this tab. The default is full-precision.

1 Blocks — Alphabetical List

1-28

Algorithm

Latency

The total latency of the block is the line buffer latency plus the latency of the kernel
calculation. Use the output control signals to determine when the output pixels are valid.

See Also
visionhdl.EdgeDetector | Edge Detection | Frame To Pixels

Related Examples
• “Edge Detection and Image Overlay”

Introduced in R2015a

 Erosion

1-29

Erosion

Morphological erode

Library

visionhdlmorph

Description

Erosion replaces each pixel with the local maximum of the neighborhood around the
pixel. The block operates on a stream of binary intensity values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independent of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate the
validity of each pixel and the location of each pixel in the frame. Use the Frame to Pixels
block to convert a pixel matrix into a pixel stream and these control signals. For a full
description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar binary value.

boolean

1 Blocks — Alphabetical List

1-30

Port Direction Description Data Type

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Dialog Box and Parameters

Neighborhood
Neighborhood, specified as a matrix or vector of ones and zeros.

The block supports neighborhoods up to 32×32 pixels.

To use a structuring element, specify the Neighborhood as
getnhood(strel(shape)). The default is ones(3,3).

Line buffer size
Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest

 Erosion

1-31

power of two. The block allocates neighborhood lines - 1-by-Line buffer size memory
locations to store the pixels. The default value is 2048.

Algorithm

Latency

The total latency of the block is the line buffer latency plus the latency of the kernel
calculation. Use the output control signals to determine when the output pixels are valid.

See Also
visionhdl.Erosion | Erosion | Frame To Pixels | getnhood | strel

Introduced in R2015a

1 Blocks — Alphabetical List

1-32

FIL Frame To Pixels
Convert full-frame video to pixel stream for FPGA-in-the-loop

Library

visionhdlio

Description

The FIL Frame To Pixels block performs the same frame-to-pixel conversion as the
Frame To Pixels block. In addition, you can configure the width of the output vector to
be a single pixel, a line, or an entire frame. The block returns control signals in vectors
of the same width as the pixel data. This optimization makes more efficient use of the
communication link between the FPGA board and your Simulink® simulation when using
FPGA-in-the-loop (FIL). To run FPGA-in-the-loop, you must have an HDL Verifier™
license.

When you generate a programming file for a FIL target in Simulink, the tool creates
a model to compare the FIL simulation with your Simulink design. For Vision HDL
Toolbox designs, the FIL block in that model replicates the pixel-streaming interface to
send one pixel at a time to the FPGA. You can modify the autogenerated model to use the

 FIL Frame To Pixels

1-33

FIL Frame To Pixels and FIL Pixels To Frame blocks to improve the bandwidth of the
communication with the FPGA board by sending one frame at a time. For how to modify
the auto-generated model, see “FPGA-in-the-Loop”.

Specify the same video format and vector size for the FIL Frames To Pixels block and the
FIL Pixels To Frame block.

Signal Attributes

Port Direction Description Data Type

matrix Input Full image, specified as an Active
pixels per line-by-Active video
lines-by-N matrix. The height and
width are the dimensions of the active
image specified in Video format. N is
the Number of components used to
express a single pixel.

• uint or int
• fixdt()

• boolean

• double or single

data1,...,dataNOutput Image pixels, returned as a vector of
M values, where M is the width of the
Output vector format. There are N
data ports, where N is the Number of
components.

Specified by Data type

hStartOut Output Control signal indicating whether each
pixel is the first pixel in a horizontal
line of a frame, returned as a vector of
M values.

boolean

hEndOut Output Control signal indicating whether each
pixel is the last pixel in a horizontal
line of a frame, returned as a vector of
M values.

boolean

vStartOut Output Control signal indicating whether each
pixel is the first pixel in the first (top)
line of a frame, returned as a vector of
M values.

boolean

vEndOut Output Control signal indicating whether
each pixel is the last pixel in the last
(bottom) line of a frame, returned as a
vector of M values.

boolean

1 Blocks — Alphabetical List

1-34

Port Direction Description Data Type

validOut Output Control signal indicating the validity
of the output pixel, returned as a
vector of M values.

boolean

 FIL Frame To Pixels

1-35

Dialog Box and Parameters

Number of components

1 Blocks — Alphabetical List

1-36

Component values of each pixel. The pixel can be represented by 1, 3, or 4
components. Set to 1 for grayscale video. Set to 3 for color video, for example, {R,G,B}
or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel for transparency. The output
is an Active pixels per line-by-Active video lines-by-Number of components
image matrix.

Data type
Output pixel data type. The default is uint8.

Output vector format
Size of the vector used to communicate with the FPGA subsystem. The block outputs
pixels and control signals in vectors of the same length. The block calculates the
length of the vectors based on the Video format parameter.

• Pixel — Output scalar values for pixel and control signals.
• Line — Output vectors contain Total pixels per line values.
• Frame — Output vectors contain Total pixels per line × Total video lines

values.

A larger value results in faster communication between the FPGA board and
Simulink. Choose the largest option that is supported by the I/O and memory
resources on your board.

Video format
Dimensions of active and inactive regions of a video frame. To select a predefined
format, use the Video format list. For a custom format, select Custom, and then
specify the dimensions as integers.

Video

Format

Active

Pixels Per

Line

Active

Video

Lines

Total

Pixels Per

Line

Total

Video

Lines

Starting

Active

Line

Front

Porch

240p 320 240 402 324 1 44
480p 640 480 800 525 36 16
480pH 720 480 858 525 33 16
576p 720 576 864 625 47 12
720p 1280 720 1650 750 25 110
768p 1024 768 1344 806 10 24
1024p 1280 1024 1688 1066 42 48

 FIL Frame To Pixels

1-37

Video

Format

Active

Pixels Per

Line

Active

Video

Lines

Total

Pixels Per

Line

Total

Video

Lines

Starting

Active

Line

Front

Porch

1080p

(default)
1920 1080 2200 1125 42 88

1200p 1600 1200 2160 1250 50 64
2KCinema 2048 1080 2750 1125 42 639
4KUHDTV 3840 2160 4400 2250 42 88
8KUHDTV 7680 4320 8800 4500 42 88
Custom User-

defined
User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

Note: When using a custom format, the values you enter for the active and inactive
dimensions of the image must add up to the total frame dimensions.

For the horizontal direction, Total pixels per line must be greater than or equal
to Front porch + Active pixels per line. The block calculates Back porch =
Total pixels per line − Front porch − Active pixels per line.

For the vertical direction, Total video lines must be greater than or equal to
Starting active line + Active video lines − 1. The block calculates Ending
active line = Starting active line + Active video lines − 1.

If you specify a format that does not conform to these rules, the block reports an
error.

See Also
FIL Pixels To Frame | Frame To Pixels

More About
• “Streaming Pixel Interface”
• “FPGA Verification”

Introduced in R2015a

1 Blocks — Alphabetical List

1-38

FIL Pixels To Frame
Convert pixel stream from FPGA-in-the-loop to full-frame video

Library

visionhdlio

Description

The FIL Pixels To Frame block performs the same pixel-to-frame conversion as the Pixels
To Frame block. In addition, you can configure the width of the input to be a single pixel,
a line, or an entire frame per step. The block expects control signal input vectors of the
same width as the pixel data. This optimization can speed up the communication link
between the FPGA board and your Simulink simulation when using FPGA-in-the-loop.
To run FPGA-in-the-loop, you must have an HDL Verifier license.

When you generate a programming file for a FIL target in Simulink, the tool creates
a model to compare the FIL simulation with your Simulink design. For Vision HDL
Toolbox designs, the FIL block in that model replicates the pixel-streaming interface to
send one pixel at a time to the FPGA. You can modify the autogenerated model to use the

 FIL Pixels To Frame

1-39

FIL Frame To Pixels and FIL Pixels To Frame blocks to improve the bandwidth of the
communication with the FPGA board by sending one frame at a time. For how to modify
the auto-generated model, see “FPGA-in-the-Loop”.

Specify the same video format for the FIL Frames To Pixels block and the FIL Pixels To
Frame block.

Signal Attributes

Port Direction Description Data Type

data1,...,dataNInput Image pixels, specified as a vector of
M values, where M is the width of the
Output vector format. There are N
data ports, where N is the Number
of components.

• uint or int
• fixdt()

• boolean

• double or single
hStartIn Input Control signal indicating whether

each pixel is the first pixel in a
horizontal line of an input frame,
returned as a vector of M values.

boolean

hEndIn Input Control signal indicating whether
each pixel is the last pixel in a
horizontal line of a frame, returned
as a vector of M values.

boolean

vStartIn Input Control signal indicating whether
each pixel is the first pixel in the first
(top) line of a frame, returned as a
vector of M values.

boolean

vEndIn Input Control signal indicating whether
each pixel is the last pixel in the last
(bottom) line of a frame, returned as
a vector of M values.

boolean

validIn Input Control signal indicating the validity
of the input pixel, returned as a
vector of M values.

boolean

matrix Output Full image, returned as an Active
pixels per line-by-Active video
lines-by-N matrix. The height and

Same as data1,...,dataN

1 Blocks — Alphabetical List

1-40

Port Direction Description Data Type

width are the dimensions of the
active image specified in Video
format. N is the Number of
components used to express a single
pixel.

validOut Output True when the output frame is
successfully recompiled from the
input stream.

boolean

Dialog Box and Parameters

Number of components
Component values of each pixel. The pixel can be represented by 1, 3, or 4
components. Set to 1 for grayscale video. Set to 3 for color video, for example, {R,G,B}
or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel for transparency. The output
is an Active pixels per line-by-Active video lines-by-Number of components
image matrix.

 FIL Pixels To Frame

1-41

Input vector format
Size of the vector used to communicate with the FPGA subsystem. The block accepts
input pixels and control signals in vectors of the same length. The block calculates
the length of the vectors based on the Video format parameter.

• Pixel — Accept scalar values for pixel and control signals.
• Line — Accept input vectors containing Total pixels per line values.
• Frame — Accept input vectors containing Total pixels per line × Total video

lines values.

A larger value results in faster communication between the FPGA board and
Simulink. Choose the largest option that is supported by the I/O and memory
resources on your board.

Video format
Dimensions of active and inactive regions of a video frame. To select a predefined
format, use the Video format list. For a custom format, select Custom, and then
specify the dimensions as integers.

Video Format Active Pixels

Per Line

Active Video Lines

240p 320 240
480p 640 480
480pH 720 480
576p 720 576
720p 1280 720
768p 1024 768
1024p 1280 1024
1080p (default) 1920 1080
1200p 1600 1200
2KCinema 2048 1080
4KUHDTV 3840 2160
8KUHDTV 7680 4320
Custom User-

defined
User-
defined

1 Blocks — Alphabetical List

1-42

See Also
FIL Frame To Pixels | Pixels To Frame

More About
• “Streaming Pixel Interface”
• “FPGA Verification”

Introduced in R2015a

 Frame To Pixels

1-43

Frame To Pixels
Convert full-frame video to pixel stream

Library

visionhdlio

Description

The Frame To Pixels block converts color or grayscale full-frame video to a pixel stream
and control signals. The control signals indicate the validity of each pixel and its location
in the frame. The pixel stream format can include padding pixels around the active
frame. You can configure the frame and padding dimensions by selecting a common video
format or specifying custom dimensions. See “Streaming Pixel Interface” for details of the
pixel stream format.

Use this block to generate input for a subsystem targeted for HDL code generation. This
block does not support HDL code generation.

If your model converts frames to a pixel stream and later converts the stream back to
frames, specify the same video format for the Frame To Pixels block and the Pixels To
Frame block.

Signal Attributes

Port Direction Description Data Type

frame Input Full image specified as a Active
pixels per line-by-Active video
lines-by-N matrix. Height and width

• uint or int
• fixdt()

1 Blocks — Alphabetical List

1-44

Port Direction Description Data Type

are the dimensions of the active
image specified in Video format. N
is the Number of components used
to express a single pixel.

• boolean

• double or single

pixel Output Single image pixel returned as
a vector of 1-by-Number of
components values.

Specified by Data type

ctrl Output Control signals describing the
validity of the pixel and the location
of the pixel within the frame,
specified as a bus containing five
signals. See “Pixel Control Bus”.

pixelcontrol

 Frame To Pixels

1-45

Dialog Box and Parameters

Number of components
Component values of each pixel. The pixel can be represented by 1, 3, or 4
components. Set to 1 for grayscale video. Set to 3 for color video, for example, {R,G,B}
or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel for transparency. The output

1 Blocks — Alphabetical List

1-46

is an Active pixels per line-by-Active video lines-by-Number of components
image matrix.

Data type
Output pixel data type. The default is uint8.

Video format
Dimensions of active and inactive regions of a video frame. To select a predefined
format, use the Video format list. For a custom format, select Custom, and then
specify the dimensions as integers.

Video

Format

Active

Pixels Per

Line

Active

Video

Lines

Total

Pixels Per

Line

Total

Video

Lines

Starting

Active

Line

Front

Porch

240p 320 240 402 324 1 44
480p 640 480 800 525 36 16
480pH 720 480 858 525 33 16
576p 720 576 864 625 47 12
720p 1280 720 1650 750 25 110
768p 1024 768 1344 806 10 24
1024p 1280 1024 1688 1066 42 48
1080p

(default)
1920 1080 2200 1125 42 88

1200p 1600 1200 2160 1250 50 64
2KCinema 2048 1080 2750 1125 42 639
4KUHDTV 3840 2160 4400 2250 42 88
8KUHDTV 7680 4320 8800 4500 42 88
Custom User-

defined
User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

Note: When using a custom format, the values you enter for the active and inactive
dimensions of the image must add up to the total frame dimensions.

 Frame To Pixels

1-47

For the horizontal direction, Total pixels per line must be greater than or equal
to Front porch + Active pixels per line. The block calculates Back porch =
Total pixels per line − Front porch − Active pixels per line.

For the vertical direction, Total video lines must be greater than or equal to
Starting active line + Active video lines − 1. The block calculates Ending
active line = Starting active line + Active video lines − 1.

If you specify a format that does not conform to these rules, the block reports an
error.

See Also
visionhdl.FrameToPixels | Pixels To Frame

More About
• “Streaming Pixel Interface”

Introduced in R2015a

1 Blocks — Alphabetical List

1-48

Gamma Corrector
Apply or remove gamma correction

Library

visionhdlconversions

Description

Gamma Corrector applies or removes gamma correction on a stream of pixels. Gamma
correction adjusts linear pixel values so that the modified values fit a curve. The de-
gamma operation performs the opposite operation to obtain linear pixel values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independent of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate the
validity of each pixel and the location of each pixel in the frame. Use the Frame to Pixels
block to convert a pixel matrix into a pixel stream and these control signals. For a full
description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a scalar
value. The data type of the output is
the same as the data type of the input.

• uint8 or uint16
• int8 or int16

 Gamma Corrector

1-49

Port Direction Description Data Type

• fixdt(0,N,M), N + M ≤
16

double and single data
types are supported for
simulation but not for HDL
code generation.

ctrl Input/
Output

Control signals describing the validity
of the pixel and the location of the
pixel within the frame, specified as a
bus containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Dialog Box and Parameters

Operation
Direction of pixel value adjustment.

• Gamma (default) — Apply gamma correction.

1 Blocks — Alphabetical List

1-50

• De-gamma — Remove gamma correction.

Gamma
Target gamma value, specified as a scalar greater than or equal to 1.

• When you set Operation to Gamma, specify Gamma as the target gamma value of
the output video stream.

• When you set Operation to De-gamma, specify Gamma as the gamma value of
the input video stream.

The default value is 2.2.
Linear segment

Option to include a linear segment in the gamma curve. When you select this check
box, the gamma curve has a linear portion near the origin. By default, this check box
is selected.

Break point
Pixel value that corresponds to the point where the gamma curve and linear segment
meet. Specify Break point as a scalar value between 0 and 1, exclusive. This
parameter applies only when you select the Linear segment check box.

The default value is 0.018.

Algorithm

For the equations used for gamma correction, see Gamma Correction in the Computer
Vision System Toolbox™ documentation.

To save hardware resources, the block implements the gamma correction equation as a
lookup table. The lookup table maps each input pixel value to a corrected output value.

Latency

The latency of the Gamma Corrector block is 2 cycles.

See Also
visionhdl.GammaCorrector | Frame To Pixels | Gamma Correction

 Gamma Corrector

1-51

Related Examples
• “Gamma Correction”

Introduced in R2015a

1 Blocks — Alphabetical List

1-52

Histogram

Frequency distribution

Library

visionhdlstatistics

Description

The Histogram block computes the frequency distribution of pixel values in a video
stream. You can configure the number and size of the bins. The block provides a read
interface for accessing each bin. The block keeps a running histogram until you reset the
bin values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts a scalar pixel
value and a bus containing five control signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame. Use the Frame to Pixels block to convert
a pixel matrix into a pixel stream and these control signals. For a full description of the
interface, see “Streaming Pixel Interface”.

 Histogram

1-53

Signal Attributes

Port Direction Description Data Type

pixel Input Single image pixel, specified as an
unsigned integer scalar.

• uint

• fixdt(0,N,0)

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

binAddr Input Bin number for reading histogram
values. The block captures this
value each cycle that readRdy is
true.

fixdt(0,N,0), N = 5,6,...,10.
Word length must be
log2(Number of bins).

binReset Input Triggers RAM initialization
sequence when true.

boolean

readRdy Output Indicates true when histogram is
ready for read.

boolean

hist Output Histogram value corresponding to
a binAddr request, returned as a
scalar.

fixdt(0,N,0)

double and single data types
are supported for simulation but
not for HDL code generation.

validOut Output Indicates true when dataOut is
available.

boolean

1 Blocks — Alphabetical List

1-54

Dialog Box and Parameters

Number of bins
Number of bins for the histogram.

Choose the number of bins depending on the input word length (WL). If the number
of bins is less than 2WL, the block truncates the least-significant bits of each pixel. If
the number of bins is greater than 2WL, the block warns about an inefficient use of
hardware resources. The default is 256.

Data type
Data type of the histogram bin values.

• double

• single

• Unsigned fixed point (default)

double and single data types are supported for simulation but not for HDL code
generation.

Word length

 Histogram

1-55

Word length of the histogram bins when Data type is Unsigned fixed point. If a
bin overflows, the count saturates and the block shows a warning. The default is 16.

Algorithm

RAM Reset and Ready Sequence

At startup, you must wait Number of bins cycles for the block to reset the RAM, before
sending input data. This initial reset happens without asserting binReset.

You cannot read histogram bins and apply pixel data at the same time. When you want
to read the bin values, wait for readRdy and then apply each bin address of interest.
The block provides the corresponding histogram values on the dataOut port, with
accompanying validOut signal.

The histogram values persist and accumulate across frames until you assert binReset.
When you assert binReset, the block takes Number of bins cycles to clear the RAM
and be ready for new input. Other input signals are ignored during reset.

The diagram shows an overview of the reset sequence. vStart and vEnd are control
signals in the pixelcontrol input bus.

The diagram shows the automatic startup reset, followed by a frame of video input. The
read window starts when readReady is asserted. The binReset signal initiates a bin
reset. The next input frame is not applied until after the reset is complete.

1 Blocks — Alphabetical List

1-56

The diagram illustrates a bin read sequence. vEnd is a control signal in the
pixelcontrol input bus. valid is a control signal in the pixelcontrol output bus.

After the last pixel of a video frame, indicated by vEnd = true, the block asserts
readRdy to show that the histogram is ready for reading. Two cycles after applying a bin
address, the block provides the value of that bin on dataOut, with a corresponding valid
signal. You can request the last bin address and assert binReset at the same time.

Latency

The block sets readRdy to true 2 cycles after receiving the last pixel of a frame. The
input pixelcontrol bus indicates the last pixel of a frame by vEnd = true. While
readRdy is true, the block captures binAddr requests on each cycle. The block provides
the corresponding histogram bin values on dataOut two cycles later.

See Also
visionhdl.Histogram | 2-D Histogram | Frame To Pixels | imhist

Related Examples
• “Histogram Equalization”

 Histogram

1-57

Introduced in R2015a

1 Blocks — Alphabetical List

1-58

Image Filter
2-D FIR filtering

Library

visionhdlfilters

Description

The Image Filter block performs two-dimensional FIR filtering on a pixel stream.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independent of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate the
validity of each pixel and the location of each pixel in the frame. Use the Frame to Pixels
block to convert a pixel matrix into a pixel stream and these control signals. For a full
description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input Single pixel, specified by a scalar
value.

• uint or int
• fixdt()

double and single data types
are supported for simulation but
not for HDL code generation.

 Image Filter

1-59

Port Direction Description Data Type

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

pixel Output Single pixel, returned as a scalar
value. You can specify the output
data type in the block mask.

• uint or int
• fixdt()

double and single data types
are supported for simulation but
not for HDL code generation.

Dialog Box and Parameters

Main

1 Blocks — Alphabetical List

1-60

Filter coefficients
Coefficients of the desired filter, specified as a vector or matrix of any numeric type.

The maximum size along any dimension of a matrix or vector is 16.
Padding method

Method for padding the boundary of the input image.

• Constant (default) — Interpret pixels outside the image frame as having a
constant value.

• Replicate — Repeat the value of pixels at the edge of the image.
• Symmetric — Pad input matrix with its mirror image.

Padding value
Constant value used to pad the boundary of the input image.

This parameter is visible when you set Padding method to Constant. The block
casts this value to the same data type as the input pixel. The default value is 0.

Line buffer size
Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates coefficient rows - 1-by-Line buffer size memory
locations to store the pixels. The default value is 2048.

 Image Filter

1-61

Data Types

Rounding mode
Rounding mode for fixed-point operations.

Overflow mode
Overflow mode for fixed-point operations.

Coefficients Data Type
Method for determining the data type of the filter coefficients.

The default is Inherit: Same as first input.

The filter coefficients do not obey the Rounding mode and the Overflow mode
parameters; instead, they are always saturated and rounded to Nearest.

Output Data Type
Method for determining the data type of the output pixels.

The default is Inherit: Same as first input.

1 Blocks — Alphabetical List

1-62

Lock output data type setting against changes by the fixed-point tools
The Fixed-Point Tool automatically changes the scaling for model objects that specify
fixed-point data types. However, if this option is selected, the tool refrains from
scaling that object. See “Fixed-Point Tool”.

Algorithm

The block implements the filter with a fully-pipelined architecture. Each multiplier has
two pipeline stages on each input and two pipeline stages on the output. The adder is a
pipelined tree structure. HDL code generation takes advantage of symmetric, unity, or
zero-value coefficients to reduce the number of multipliers.

You can optimize the multipliers for HDL code generation using canonical signed
digit (CSD) or factored CSD. Right-click on the block and select HDL Code > HDL
Properties and set the ConstMultiplierOptimization parameter.

Latency

The total latency of the block is the line buffer latency plus the latency of the kernel
calculation. Use the output control signals to determine when the output pixels are valid.

The latency of the kernel varies depending on the coefficients you choose.

See Also
visionhdl.ImageFilter | 2-D FIR Filter | Frame To Pixels

Introduced in R2015a

 Image Statistics

1-63

Image Statistics

Mean, variance, and standard deviation

Library

visionhdlstatistics

Description

The Image Statistics block calculates the mean, variance, and standard deviation of
streaming video data. Each calculation is performed over all pixels in the input region
of interest (ROI). The block implements the calculations using hardware-efficient
algorithms.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts a scalar pixel
value and a bus containing five control signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame. Use the Frame to Pixels block to convert
a pixel matrix into a pixel stream and these control signals. For a full description of the
interface, see “Streaming Pixel Interface”.

• To change the size and dimensions of the ROI, you can manipulate the input video
stream control signals. See “Regions of Interest” on page 1-69.

• The number of valid pixels in the input image affect the accuracy of the mean
approximation. To avoid approximation error, use an image that contains fewer
than 64 pixels, or a multiple of 64 pixels. For details of the mean approximation, see
“Algorithm” on page 1-66.

1 Blocks — Alphabetical List

1-64

Signal Attributes

Port Direction Description Data Type

pixel Input Single image pixel specified as a
scalar value.

• uint8/uint16

• fixdt(0,N,0), N = 8,9,...,16

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

mean Output Mean of the most recent input
frame completed.

Same as pixel

var Output Variance of the most recent input
frame completed.

Same as pixel

stdDev Output Standard deviation of the most
recent input frame completed.

Same as pixel

validOut Output Computations completed. The
block sets this output to true
when the statistic outputs for a
frame are ready.

boolean

 Image Statistics

1-65

Note: The block uses full-precision arithmetic for internal calculation. At the output,
intermediate data is cast back to the input type using the following fixed-point settings:
RoundingMethod = Nearest, and OverflowAction = Saturate. The table shows the
output word length for each calculation, relative to the input word length (IWL).

IWL 2×IWL 2×IWL

Mean Variance Std. Deviation

Dialog Box and Parameters

Main

Enable mean output
Select this check box to calculate the mean of each input frame. If you clear this
check box, the mean output does not show on the block.

Enable variance output
Select this check box to calculate the variance of each input frame. If you clear this
check box, the var output does not show on the block.

Enable std. deviation
Select this check box to calculate the standard deviation of each input frame. If you
clear this check box, the stdDev output does not show on the block.

1 Blocks — Alphabetical List

1-66

Algorithm

Architecture

The calculations of mean, variance, and standard deviation build off each other. For
hardware efficiency, the calculation logic is shared as shown.

Mean

The equation to calculate the precise mean pixel value requires large internal word
lengths and expensive division logic.

m =
*

==

ÂÂ
1

11
M N

xij

j

N

i

M

Instead of using this equation, the block calculates the mean by a series of three
accumulators that compute the mean of a segment of pixels. First, find the sum of a
window of 64 pixels, and normalize.

m
L n

n

x
1

1

64
1

64

=
=

Â

 Image Statistics

1-67

Then accumulate 64 of the previous windows, and normalize.

m m
L nL

n
2 1

1

64
1

64

=
=
Â

A third accumulator sums 64 of the 64×64 windows, and normalizes the same way.

m m
L nL

n
3 2

1

64
1

64

=
=
Â

Each valid pixel is accumulated as it arrives. Its location within a line or frame does not
affect the accumulation logic.

When vEnd is received, the block promotes any remaining data in the three levels
of mean calculation to calculate the final output. If an accumulator counter is not at
64 when vEnd arrives, that level normalizes by the actual value of the counter. The
constants for this multiplication are in a lookup table (LUT). The three accumulators
share a single LUT and multiplier.

1 Blocks — Alphabetical List

1-68

This method of mean calculation is accurate when the frame includes a multiple of 64
pixels, because vEnd aligns with the accumulator rollovers. This method is also accurate
when the frame has fewer than 64 pixels, because only the first accumulator is needed.

However, when the number of pixels in the frame is not a multiple of 64, the block must
promote the final accumulation to the next level before the counter reaches 64. This
promotion introduces an error in the normalization calculation at subsequent levels.
The figure shows the normalization error introduced in the mean calculation by various
image sizes. The spikes occur where an image size is just over a multiple of 64 pixels.

Variance

The block calculates variance of the input pixels using the following equation.

 Image Statistics

1-69

s m2 2

11

21
= -

==

ÂÂ(
*

)
M N

xij

j

N

i

M

The mean and the mean of the squared input are calculated in parallel. The block
calculates the mean of squares using the same approximation method used to calculate
the mean, as described in the previous section.

Standard Deviation

The block calculates the square root of the variance using a pipelined bit-set-and-check
algorithm. This algorithm computes the square root using addition and shifts rather than
multipliers. For an N-bit input, the result has N bits of accuracy.

This method is hardware efficient for general inputs. If your data has known
characteristics that allow for a more efficient square root implementation, you can
disable the calculation in this block and construct your own logic from HDL-supported
blocks.

Regions of Interest

Statistics are often calculated on small regions of interest (ROI) rather than an entire
video frame. This block performs calculations on all pixels between vStart and vEnd
signals in the ctrl bus, and does not track pixel location within the frame. You can
manipulate the streaming control signals to reduce the size of a frame and delineate the
boundaries of a region of interest before passing the video stream to this block. For an
example that selects multiple small ROIs from a larger image, see (example link).

The block supports images containing up to 64×64×64 (262,144) pixels. This size
represents the number of valid pixels, not the dimensions of the image. If you provide an
image with more than 64×64×64 pixels, the block calculates the requested statistics on
only the first 262,144 pixels and then asserts validOut. The block ignores extra pixels
until it receives a vEnd signal.

Latency

The latency from vEnd to validOut depends on the calculations you select.

When the block receives a vEnd signal that is true, it combines the remaining data in
the three levels of mean calculation to calculate the final output. This final step takes 4

1 Blocks — Alphabetical List

1-70

cycles per level, resulting in a maximum of 12 cycles of latency between the input vEnd
signal and the validOut signal. Once the mean is available, the variance calculation
takes 4 cycles. The square root logic requires input word length (IWL) cycles of latency.

If a calculation is not selected, and is not needed for other selected calculations, that logic
is excluded from the generated HDL code.

The table shows the calculation logic and latency for various block configurations.

MeanVarianceStd.
Deviation

Logic Excluded From
HDL

Latency (cycles)

✓ ✓ ✓ [4,8, or 12]+4+IWL
✓ variance and square

root
[4,8, or 12] (depending on input size relative to
the 64-bit accumulators)

 ✓ square root [4,8, or 12]+4
 ✓ [4,8, or 12]+4+IWL
✓ ✓ square root [4,8, or 12]+4
✓ ✓ [4,8, or 12]+4+IWL
 ✓ ✓ [4,8, or 12]+4+IWL

Note: There must be at least 12 cycles between the vEnd signals on the input. This
timing restriction enables the block to finish processing the current frame before the new
one arrives.

See Also
visionhdl.ImageStatistics | 2-D Standard Deviation | 2-D Mean | 2-D Variance |
Frame To Pixels

Related Examples
• “Multi-Zone Metering”

Introduced in R2015a

 Lookup Table

1-71

Lookup Table
Map input pixel to output pixel using custom rule

Library

visionhdlconversions

Description

The Lookup Table block provides a custom one-to-one map between input pixel values
and output pixel values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independent of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate the
validity of each pixel and the location of each pixel in the frame. Use the Frame to Pixels
block to convert a pixel matrix into a pixel stream and these control signals. For a full
description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input Single image pixel, specified as a scalar
value.

• boolean

• uint8 or uint16
• fixdt(0,N,M), N +

M ≤ 16

1 Blocks — Alphabetical List

1-72

Port Direction Description Data Type

ctrl Input/Output Control signals describing the validity
of the pixel and the location of the
pixel within the frame, specified as a
bus containing five signals. See “Pixel
Control Bus”.

pixelcontrol

pixel Output Single image pixel, returned as a scalar
value.

Specified by Table data.

double and single data
types are supported for
simulation but not for
HDL code generation.

Dialog Box and Parameters

Table data
Determines the one-to-one correspondence between an input pixel value and an
output pixel value.

• The table data is a row or column vector of any data type. The data type of the
table data determines that of the output pixel.

• The length of the vector must be 2WordLength, where WordLength is the size, in bits,
of the input pixel.

• The smallest representable value of the input data type maps to the first element
of the table, the second smallest value maps to the second element, and so on. For

 Lookup Table

1-73

example, if the input pixel has a data type of fixdt(0,3,1), the input value 0
maps to the first element of the table, 0.5 maps to the second element, 1 maps to
the third, and so on.

The default value is uint8(0:1:255).

Algorithm

Latency

The latency of the Lookup Table block is 2 cycles.

See Also
visionhdl.LookupTable | Frame To Pixels

Introduced in R2015a

1 Blocks — Alphabetical List

1-74

Median Filter
2-D median filtering

Library

visionhdlfilter

Description

Median Filter replaces each pixel with the median value of the surrounding N-by-N
neighborhood. The median is less sensitive to extreme values than the mean. Use this
block to remove salt-and-pepper noise from an image without significantly reducing the
sharpness of the image. You can specify the neighborhood size and the padding values for
the edges of the input image.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independent of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate the
validity of each pixel and the location of each pixel in the frame. Use the Frame to Pixels
block to convert a pixel matrix into a pixel stream and these control signals. For a full
description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/Output Single image pixel, specified as
a scalar integer value. The data

• uint or int
• fixdt(~,N,0)

 Median Filter

1-75

Port Direction Description Data Type

type of the output is the same as
the data type of the input.

• boolean

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/Output Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See
“Pixel Control Bus”.

pixelcontrol

Dialog Box and Parameters

Neighborhood size
Size in pixels of the image region used to compute the median.

• 3×3 (default)
• 5×5

• 7×7

1 Blocks — Alphabetical List

1-76

Padding method
Method for padding the boundary of the input image.

• Constant — Pad input matrix with a constant value.
• Replicate — Repeat the value of pixels at the edge of the image.
• Symmetric (default) — Pad image edge with its mirror image.

Padding value
Constant value used to pad the boundary of the input image.

This parameter is visible when you set Padding method to Constant. The block
casts this value to the same data type as the input pixel. The default value is 0.

Line buffer size
Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The block allocates N - 1-by-Line buffer size memory locations to
store the pixels used to compute the median value. N is the dimension of the square
region specified in Neighborhood size. The default value is 2048.

Algorithm

Latency

The total latency of the block is the line buffer latency plus the latency of the kernel
calculation. Use the output control signals to determine when the output pixels are valid.

 Median Filter

1-77

The latency of the filter kernel depends on the neighborhood size as shown in the table.

Neighborhood size # of Comparisons to Find Median

3×3 11
5×5 75
7×7 230

See Also
visionhdl.MedianFilter | Frame To Pixels | Median Filter

Introduced in R2015a

1 Blocks — Alphabetical List

1-78

Opening
Morphological open

Library

visionhdlmorph

Description

Opening is a morphological erosion operation, followed by a morphological dilation
operation, using the same neighborhood for both calculations. The block operates on
a stream of intensity values. The block implements the calculations using hardware-
efficient approximations for use with HDL code generation.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independent of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate the
validity of each pixel and the location of each pixel in the frame. Use the Frame to Pixels
block to convert a pixel matrix into a pixel stream and these control signals. For a full
description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar binary value.

boolean

 Opening

1-79

Port Direction Description Data Type

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Dialog Box and Parameters

Neighborhood
Neighborhood, specified as a matrix or vector of 1s and 0s.

The block supports neighborhoods up to 32×32 pixels. To use a structuring element,
specify the Neighborhood as getnhood(strel(shape)). The default is
[0,1,0;1,1,1;0,1,0].

Line buffer size
Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates neighborhood lines - 1-by-Line buffer size memory
locations to store the pixels. The default value is 2048.

1 Blocks — Alphabetical List

1-80

Algorithm

Latency

The total latency of the block is the line buffer latency plus the latency of the kernel
calculation. Opening is a compound operation. Therefore, this block contains a second
line buffer between the erosion kernel and the dilation kernel. Use the output control
signals to determine when the output pixels are valid.

See Also
visionhdl.Opening | Dilation | Erosion | Frame To Pixels | getnhood | Opening |
strel

Introduced in R2015a

 Pixel Control Bus Creator

1-81

Pixel Control Bus Creator
Create control signal bus for use with Vision HDL Toolbox blocks

Library

visionhdlutilities

Description

The Pixel Control Bus Creator block creates a pixelcontrol bus. See “Pixel Control
Bus”.

The block is an implementation of the Simulink Bus Creator block. See Bus Creator for
more information.

See Also
“Streaming Pixel Interface” | Frame To Pixels | Pixels To Frame

Introduced in R2015a

1 Blocks — Alphabetical List

1-82

Pixel Control Bus Selector
Select signals from control signal bus used by Vision HDL Toolbox blocks

Library

visionhdlutilities

Description

The Pixel Control Bus Selector block selects signals from the pixelcontrol bus. See
“Pixel Control Bus”.

The block is an implementation of the Simulink Bus Selector block. See Bus Selector for
more information.

See Also
“Streaming Pixel Interface” | Frame To Pixels | Pixels To Frame

Introduced in R2015a

 Pixels To Frame

1-83

Pixels To Frame

Convert pixel stream to full-frame video

Library

visionhdlio

Description

The Pixels To Frame block converts a color or grayscale pixel stream and control signals
to full-frame video. The control signal bus indicates the validity of each pixel and its
location within the frame. The pixel stream format can include padding pixels around
the active frame. You can configure the frame and padding dimensions by selecting a
common video format or specifying custom dimensions. See “Streaming Pixel Interface”
for details of the pixel stream format.

Use this block to convert the output of a subsystem targeted for HDL code generation
back to frames. This block does not support HDL code generation.

If your model converts frames to a pixel stream and later converts the stream back to
frames, specify the same video format for the Frame To Pixels block and the Pixels To
Frame block.

Signal Attributes

The Pixels To Frame block has the following input and output ports.

1 Blocks — Alphabetical List

1-84

Port Direction Description Data Type

pixel Input Single image pixel specified by
a vector of 1-by-Number of
components values.

• uint or int
• fixdt()

• boolean

• double or single
ctrl Input Control signals describing the

validity of the pixel and the location
of the pixel within the frame,
specified as a bus containing five
signals. See “Pixel Control Bus”.

pixelcontrol

frame Output Full image returned as a Active
pixels per line-by-Active video
lines-by-N matrix. Height and width
are the dimensions of the active
image specified in Video format. N
is the Number of components used
to express a single pixel.

Same as pixel

validOut Output True when the output frame is
successfully recompiled from the
input stream.

boolean

 Pixels To Frame

1-85

Dialog Box and Parameters

Number of components
Component values of each pixel. The pixel can be represented by 1, 3, or 4
components. Set to 1 for grayscale video. Set to 3 for color video, for example, {R,G,B}
or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel for transparency. The output
is an Active pixels per line-by-Active video lines-by-Number of components
image matrix.

Video format
Dimensions of active and inactive regions of a video frame. To select a predefined
format, use the Video format pull-down menu. For a custom format, select Custom,
then specify the dimensions as integers.

Video Format Active Pixels

Per Line

Active Video Lines

240p 320 240
480p 640 480
480pH 720 480

1 Blocks — Alphabetical List

1-86

Video Format Active Pixels

Per Line

Active Video Lines

576p 720 576
720p 1280 720
768p 1024 768
1024p 1280 1024
1080p (default) 1920 1080
1200p 1600 1200
2KCinema 2048 1080
4KUHDTV 3840 2160
8KUHDTV 7680 4320
Custom User-

defined
User-
defined

See Also
visionhdl.PixelsToFrame | Frame To Pixels

More About
• “Streaming Pixel Interface”

Introduced in R2015a

2

System Objects — Alphabetical List

2 System Objects — Alphabetical List

2-2

visionhdl.ChromaResampler System object
Package: visionhdl

Downsample or upsample chrominance component

Description

visionhdl.ChromaResampler downsamples or upsamples a pixel stream.

• Downsampling reduces bandwidth and storage requirements in a video system by
combining pixel chrominance components over multiple pixels. You can specify a filter
to prevent aliasing, by selecting the default filter or by entering coefficients.

• Upsampling restores a signal to its original rate. You can use interpolation or
replication to calculate the extra sample.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

The object accepts luma and the chrominance components. The object does not modify the
luma component and applies delay to align with the resampled chrominance outputs. The
rate of the output luma component is the same as the input.

Construction

CR = visionhdl.ChromaResampler returns a System object™, CR, that downsamples
from 4:4:4 to 4:2:2 and applies the default antialiasing filter.

CR = visionhdl.ChromaResampler(Name,Value) returns a chroma resampler
System object, CR, with additional options specified by one or more Name,Value pair
arguments. Name is a property name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value pair arguments in
any order as Name1,Value1,...,NameN,ValueN. Properties not specified retain their
default values.

 visionhdl.ChromaResampler System object

2-3

Properties

Resampling

Resampling format.

• 4:4:4 to 4:2:2 (default) — Perform a downsampling operation.
• 4:2:2 to 4:4:4 — Perform an upsampling operation.

AntialiasingFilterSource

Lowpass filter to accompany a downsample operation.

• Auto (default) — Built-in lowpass filter.
• Property — Filter using the coefficients in HorizontalFilterCoefficients

property.
• None — No filtering of the input signal.

This property applies when you set Resampling to 4:4:4 to 4:2:2.

HorizontalFilterCoefficients

Coefficients for the antialiasing filter.

Enter the coefficients as a vector. This property applies when you set Resampling to
4:4:4 to 4:2:2 and Antialiasing filter to Property.

Default: [0.2,0.6,0.2]

InterpolationFilter

Interpolation method for an upsample operation.

• Linear (default) — Linear interpolation to calculate the missing values.
• Pixel replication — Repeat the chrominance value of the preceding pixel to

create the missing pixel.

This property applies when you set Resampling to 4:2:2 to 4:4:4.

RoundingMethod

Rounding mode used for fixed-point operations.

2 System Objects — Alphabetical List

2-4

The object uses fixed-point arithmetic for internal calculations when the input is any
integer or fixed-point data type. This option does not apply when the input is single or
double type.

Default: Floor

OverflowAction

Overflow action used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any
integer or fixed-point data type. This option does not apply when the input is single or
double type.

Default: Wrap

CustomCoefficientsDataType

Data type for the antialiasing filter coefficients.

Specify a custom data type as a string. This parameter applies when you set
Antialiasing filter to Property or Auto.

Default: fixdt(1,16,0)

Methods

clone
Create object with the same property
values

isLocked
Locked status (logical)

release
Allow changes to property values and input
characteristics

step
Compute next pixel in upsampled or
downsampled pixel stream

 visionhdl.ChromaResampler System object

2-5

Algorithm

This object implements the algorithms described on the Chroma Resampler block
reference page.

Latency

The ChromaResampler object has a latency of 2 cycles.

See Also
vision.ChromaResampler | Chroma Resampler | visionhdl.FrameToPixels

Introduced in R2015a

2 System Objects — Alphabetical List

2-6

clone
System object: visionhdl.ChromaResampler
Package: visionhdl

Create object with the same property values

Syntax

newCR = clone(CR)

Description

newCR = clone(CR) creates another instance of the ChromaResampler System
object, CR, that has the same property values. The new object is unlocked and contains
uninitialized states.

Input Arguments

CR

visionhdl.ChromaResampler System object

Output Arguments

newCR

New ChromaResampler System object that has the same property values as the original
System object.

Introduced in R2015a

 isLocked

2-7

isLocked
System object: visionhdl.ChromaResampler
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(CR)

Description

TF = isLocked(CR) returns the locked status, TF, of the ChromaResampler System
object, CR.

Introduced in R2015a

2 System Objects — Alphabetical List

2-8

release
System object: visionhdl.ChromaResampler
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(CR)

Description

release(CR) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

CR

visionhdl.ChromaResampler System object

Introduced in R2015a

 step

2-9

step
System object: visionhdl.ChromaResampler
Package: visionhdl

Compute next pixel in upsampled or downsampled pixel stream

Syntax
[pixelOut,ctrlOut] = step(CR,pixelIn,ctrlIn)

Description
[pixelOut,ctrlOut] = step(CR,pixelIn,ctrlIn) computes the next output
pixel, pixelOut, in the resampled video stream. The pixel data arguments, pixelIn and
pixelOut, are vectors of three values representing a pixel in Y'CbCr color space. The luma
component and control signals, ctrlIn, are passed through and aligned with the output
pixel stream.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

Note: The object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, first call the release method to unlock the object.

Input Arguments
CR

visionhdl.ChromaResampler System object.

2 System Objects — Alphabetical List

2-10

pixelIn

Single pixel in gamma-corrected Y'CbCr color space, specified as a vector of three values.

Supported data types:

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16
• double and single data types are supported for simulation but not for HDL code

generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single pixel in gamma-corrected Y'CbCr color space, returned as a vector of three values.

Supported data types:

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16
• double and single data types are supported for simulation but not for HDL code

generation.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

 visionhdl.ColorSpaceConverter System object

2-11

visionhdl.ColorSpaceConverter System object

Package: visionhdl

Convert signals between color spaces

Description

visionhdl.ColorSpaceConverter converts between R'G'B' and Y'CbCr color spaces,
and also converts R'G'B' to intensity.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

Note: The ColorSpaceConverter System object operates on gamma-corrected color
spaces. However, to simplify use of the System object, the property arguments do not
include the prime notation.

Construction

CSC = visionhdl.ColorSpaceConverter returns a System object, CSC, that
converts R'G'B' to Y'CbCr using the Rec. 601 (SDTV) standard.

CSC = visionhdl.ColorSpaceConverter(Name,Value) returns a System object,
CSC, with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

2 System Objects — Alphabetical List

2-12

Properties

Conversion

Conversion that the object performs on the input video stream.

• RGB to YCbCr (default)
• YCbCr to RGB

• RGB to intensity

The step method accepts input as a vector of three values representing a single pixel. If
you choose RGB to intensity, the output is a scalar value. Otherwise, the output is a
vector of three values.

ConversionStandard

Conversion equation to use on the input video stream.

• Rec. 601 (SDTV) (default)
• Rec. 709 (HDTV)

This property does not apply when you set Conversion to RGB to intensity.

ScanningStandard

Scanning standard to use for HDTV conversion.

• 1250/50/2:1 (default)
• 1125/60/2:1

This property applies when you set ConversionStandard to Rec. 709 (HDTV).

Methods

clone
Create object having the same property
values

 visionhdl.ColorSpaceConverter System object

2-13

isLocked
Locked status (logical)

release
Allow changes to property values and input
characteristics

step
Convert one pixel between color spaces

Examples

Convert a RGB image to grayscale.

% Set dimensions of test image

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('fabric.png');

% Select portion of image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels,:);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',3,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

csc = visionhdl.ColorSpaceConverter(...

 'Conversion','RGB to intensity');

% Serialize the test image

% pixel is a vector of intensity values

% ctrl is a vector of control signals accompanying each pixel

2 System Objects — Alphabetical List

2-14

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

%[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

[numPixelsPerFrame,~] = size(pixIn);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

for p = 1:numPixelsPerFrame

 [pixOut(p),ctrlOut(p)] = step(csc,pixIn(p,:),ctrlIn(p));

end

% Create deserializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Color Space Converter block
reference page.

Latency

Objects with R'G'B' input have a latency of 9 cycles. Objects with Y'CbCr input have a
latency of 10 cycles because one cycle is required to check for and correct headroom and
footroom violations.

See Also
Colorspace Converter | vision.ColorSpaceConverter | rgb2ycbcr |
visionhdl.FrameToPixels | ycbcr2rgb | rgb2gray

 visionhdl.ColorSpaceConverter System object

2-15

Introduced in R2015a

2 System Objects — Alphabetical List

2-16

clone
System object: visionhdl.ColorSpaceConverter
Package: visionhdl

Create object having the same property values

Syntax

newCSC = clone(CSC)

Description

newCSC = clone(CSC) creates another instance of the ColorSpaceConverter System
object, CSC, that has the same property values. The new object is unlocked and contains
uninitialized states.

Input Arguments

CSC

visionhdl.ColorSpaceConverter System object

Output Arguments

newCSC

New ColorSpaceConverter System object that has the same property values as the
original System object.

Introduced in R2015a

 isLocked

2-17

isLocked
System object: visionhdl.ColorSpaceConverter
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(CSC)

Description

TF = isLocked(CSC) returns the locked status, TF, of the ColorSpaceConverter
System object, CSC.

Introduced in R2015a

2 System Objects — Alphabetical List

2-18

release
System object: visionhdl.ColorSpaceConverter
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(CSC)

Description

release(CSC) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

CSC

visionhdl.ColorSpaceConverter System object

Introduced in R2015a

 step

2-19

step
System object: visionhdl.ColorSpaceConverter
Package: visionhdl

Convert one pixel between color spaces

Syntax

[pixelOut,ctrlOut] = step(CSC,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(CSC,pixelIn,ctrlIn) converts a single pixel from
one color space to another. The input, pixelIn is a vector of three values representing
one pixel in R'G'B' or Y'CbCr color space. If the Conversion property is set to RGB to
YCbCr or YCbCr to RGB, then pixelOut is a vector of three values representing one
pixel. If the Conversion property is set to RGB to intensity, then pixelOut is a
scalar value representing one pixel.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

Note: The ColorSpaceConverter System object operates on gamma-corrected color
spaces. However, to simplify use of the System object, the property arguments do not
include the prime notation.

Note: The object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, first call the release method to unlock the object.

2 System Objects — Alphabetical List

2-20

Input Arguments

CSC

visionhdl.ColorSpaceConverter System object.

pixelIn

Input pixel in gamma-corrected R'G'B' or Y'CbCr color space, specified as a vector of
unsigned integer values.

Supported data types:

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16
• double and single data types are supported for simulation but not for HDL code

generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Output pixel specified as a vector of three unsigned integer values, or a scalar unsigned
integer value.

• If you set the Conversion property to RGB to YCbCr or YCbCr to RGB, then
pixelOut is a vector representing the pixel in gamma-corrected color space.

• If you set the Conversion property to RGB to intensity, then pixelOut is a
scalar representing pixel intensity.

Supported data types:

• uint8 or uint16

 step

2-21

• fixdt(0,N,0), N = 8,9,....,16
• double and single data types are supported for simulation but not for HDL code

generation.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2 System Objects — Alphabetical List

2-22

visionhdl.Closing System object
Package: visionhdl

Morphological close

Description

visionhdl.Closing performs a morphological dilation operation, followed by a
morphological erosion operation, using the same neighborhood for both calculations. The
object operates on a stream of binary intensity values.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

Construction

C = visionhdl.Closing returns a System object, C, that performs morphological close
on a binary video stream.

C = visionhdl.Closing(Name,Value) returns a System object, C, with additional
options specified by one or more Name,Value pair arguments. Name is a property
name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

Neighborhood

Neighborhood for computing local maxima and minima, specified as a matrix or vector of
ones and zeros.

 visionhdl.Closing System object

2-23

The object supports neighborhoods up to 32×32 pixels. To use a structuring element,
specify the Neighborhood as getnhood(strel(shape)).

Default: [0,1,0;1,1,1;0,1,0]

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal line.
If you specify a value that is not a power of two, the object uses the next largest power of
two. The object allocates neighborhood lines - 1-by-LineBufferSize memory locations
to store the pixels.

Default: 2048

Methods
clone

Create object having the same property
values

isLocked
Locked status (logical)

release
Allow changes to property values and input
characteristics

step
Report closed pixel value based on
neighborhood

Examples
Perform morphological close on a thumbnail image.

% Set dimensions of test image

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('rice.png');

2 System Objects — Alphabetical List

2-24

% Select portion of image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

% Convert to binary image

frmInput = frmInput>128;

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

% Create filter

 mclose = visionhdl.Closing(...

 'Neighborhood',getnhood(strel('disk',5)));

% Serialize the test image

% pixel is a vector of intensity values

% ctrl is a vector of control signals accompanying each pixel

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

%[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

[numPixelsPerFrame,~] = size(pixIn);

pixOut = false(numPixelsPerFrame,1);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

% Monitor control signals to determine latency of the object

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 sprintf('valid in at index %d',p)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = step(mclose,pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 visionhdl.Closing System object

2-25

 sprintf('valid out at index %d',p)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

% deserializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Closing block reference page.

See Also
visionhdl.FrameToPixels | vision.MorphologicalClose | imclose | strel |
getnhood | Closing

Introduced in R2015a

2 System Objects — Alphabetical List

2-26

clone
System object: visionhdl.Closing
Package: visionhdl

Create object having the same property values

Syntax

newC = clone(C)

Description

newC = clone(C) creates another instance of the Closing System object, C, that has
the same property values. The new object is unlocked and contains uninitialized states.

Input Arguments

C

visionhdl.Closing System object

Output Arguments

newC

New Closing System object that has the same property values as the original System
object.

Introduced in R2015a

 isLocked

2-27

isLocked
System object: visionhdl.Closing
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(C)

Description

TF = isLocked(C) returns the locked status, TF, of the Closing System object, C.

Introduced in R2015a

2 System Objects — Alphabetical List

2-28

release
System object: visionhdl.Closing
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(C)

Description

release(C) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

C

visionhdl.Closing System object

Introduced in R2015a

 step

2-29

step
System object: visionhdl.Closing
Package: visionhdl

Report closed pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(C,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(C,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, in the pixel stream resulting from a morphological close operation on the
neighborhood around each input pixel, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

Note: The object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, first call the release method to unlock the object.

Input Arguments

C

visionhdl.Closing System object

2 System Objects — Alphabetical List

2-30

pixelIn

Single pixel, specified as a scalar logical value.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single pixel value, representing the closed value based on the pixel neighborhood,
returned as a scalar logical.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

 visionhdl.DemosaicInterpolator System object

2-31

visionhdl.DemosaicInterpolator System object
Package: visionhdl

Construct full RGB pixel data from Bayer pattern pixels

Description

visionhdl.DemosaicInterpolator provides a Bayer pattern interpolation filter
for streaming video data. You can select a low complexity bilinear interpolation, or a
moderate complexity gradient-corrected bilinear interpolation. The object implements the
calculations using hardware-efficient algorithms for HDL code generation.

• The object performs bilinear interpolation on a 3×3 pixel window using only additions
and bit shifts.

• The object performs gradient correction on a 5×5 pixel window. The object implements
the calculation using bit shift, addition, and low order Canonical Signed Digit (CSD)
multiply.

Construction

D = visionhdl.DemosaicInterpolator returns a System object, D, that interpolates
R'G'B' data from a Bayer pattern pixel stream.

D = visionhdl.DemosaicInterpolator(Name,Value) returns a System object,
D, with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

InterpolationAlgorithm

Algorithm the object uses to calculate the missing pixel values.

2 System Objects — Alphabetical List

2-32

• Bilinear — Average of the pixel values in the surrounding 3×3 neighborhood.
• Gradient-corrected linear (default) — Bilinear average, corrected for intensity

gradient.

SensorAlignment

Color sequence of the pixels in the input stream.

Specify the sequence of R, G, and B pixels that correspond to the 2-by-2 block of pixels in
the top-left corner of the input image. Specify the sequence in left-to-right, top-to-bottom
order. For instance, the default value, RGGB, represents an image with this pattern.

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal line.
If you specify a value that is not a power of two, the object uses the next largest power
of two. When you set InterpolationAlgorithm to Bilinear, the object allocates 2-
by-LineBufferSize memory locations. When you set InterpolationAlgorithm to
Gradient-corrected linear, the object allocates 4-by-LineBufferSize memory
locations.

Default: 2048

Methods

clone
Create object having the same property
values

isLocked
Locked status (logical)

 visionhdl.DemosaicInterpolator System object

2-33

release
Allow changes to property values and input
characteristics

step
Demosaic a Bayer pattern video stream

Algorithm

This object implements the algorithms described on the Demosaic Interpolator block
reference page.

See Also
vision.DemosaicInterpolator | demosaic | Demosaic Interpolator |
visionhdl.FrameToPixels

Introduced in R2015a

2 System Objects — Alphabetical List

2-34

clone
System object: visionhdl.DemosaicInterpolator
Package: visionhdl

Create object having the same property values

Syntax

newD = clone(D)

Description

newD = clone(D) creates another instance of the DemosaicInterpolator System
object, D, that has the same property values. The new object is unlocked and contains
uninitialized states.

Input Arguments

D

visionhdl.DemosaicInterpolator System object

Output Arguments

newD

New DemosaicInterpolator System object that has the same property values as the
original System object.

Introduced in R2015a

 isLocked

2-35

isLocked
System object: visionhdl.DemosaicInterpolator
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(D)

Description

TF = isLocked(D) returns the locked status, TF, of the DemosiacInterpolator
System object, D.

Introduced in R2015a

2 System Objects — Alphabetical List

2-36

release
System object: visionhdl.DemosaicInterpolator
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(D)

Description

release(D) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

D

visionhdl.DemosaicInterpolator System object

Introduced in R2015a

 step

2-37

step
System object: visionhdl.DemosaicInterpolator
Package: visionhdl

Demosaic a Bayer pattern video stream

Syntax

[pixelOut,ctrlOut] = step(D,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(D,pixelIn,ctrlIn) interpolates the missing color
values of a Bayer pattern input pixel stream, and returns the next pixel value, pixelOut,
as a vector of R'G'B' values. pixelIn represents one pixel in a Bayer pattern image.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

Note: The object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, first call the release method to unlock the object.

Input Arguments

D

visionhdl.DemosaicInterpolator System object.

2 System Objects — Alphabetical List

2-38

pixelIn

Single pixel, specified as a scalar value.

Supported data types:

• uint or int
• fixdt(0,N,0)

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single pixel, returned as a vector of three values in R'G'B' color space.

The data type of pixelOut is the same as the data type of pixelIn.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

 visionhdl.Dilation System object

2-39

visionhdl.Dilation System object
Package: visionhdl

Find local maxima

Description

visionhdl.Dilation replaces each pixel with the local minimum of the neighborhood
around the pixel. The object operates on a stream of binary intensity values.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

Construction

D = visionhdl.Dilation returns a System object, D, that performs morphological
dilation on a binary video stream.

D = visionhdl.Dilation(Name,Value) returns a System object, D, with
additional options specified by one or more Name,Value pair arguments. Name is
a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

Neighborhood

Neighborhood for computing local minima, specified as a matrix or vector of ones and
zeros.

2 System Objects — Alphabetical List

2-40

The object supports neighborhoods up to 32×32 pixels. To use a structuring element,
specify the Neighborhood as getnhood(strel(shape)).

Default: [0,1,0;1,1,1;0,1,0]

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal line.
If you specify a value that is not a power of two, the object uses the next largest power of
two. The object allocates neighborhood lines - 1-by-LineBufferSize memory locations
to store the pixels.

Default: 2048

Methods
clone

Create object having the same property
values

isLocked
Locked status (logical)

release
Allow changes to property values and input
characteristics

step
Report dilated pixel value based on
neighborhood

Examples
Perform morphological dilation on a thumbnail image.

% Set dimensions of test image

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('rice.png');

 visionhdl.Dilation System object

2-41

% Select portion of image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

% Convert to binary image

frmInput = frmInput>128;

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

% Create filter

 mdilate = visionhdl.Dilation(...

 'Neighborhood',getnhood(strel('disk',5)));

% Serialize the test image

% pixel is a vector of intensity values

% ctrl is a vector of control signals accompanying each pixel

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

%[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

[numPixelsPerFrame,~] = size(pixIn);

pixOut = false(numPixelsPerFrame,1);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

% Monitor control signals to determine latency of the object

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 sprintf('valid in at index %d',p)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = step(mdilate,pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

2 System Objects — Alphabetical List

2-42

 sprintf('valid out at index %d',p)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

% deserializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Dilation block reference page.

See Also
Dilation | visionhdl.FrameToPixels | vision.MorphologicalDilate |
imdilate | strel | getnhood

Introduced in R2015a

 clone

2-43

clone
System object: visionhdl.Dilation
Package: visionhdl

Create object having the same property values

Syntax

newD = clone(D)

Description

newD = clone(D) creates another instance of the Dilation System object, D, that has
the same property values. The new object is unlocked and contains uninitialized states.

Input Arguments

D

visionhdl.Dilation System object

Output Arguments

newD

New Dilation System object that has the same property values as the original System
object.

Introduced in R2015a

2 System Objects — Alphabetical List

2-44

isLocked
System object: visionhdl.Dilation
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(D)

Description

TF = isLocked(D) returns the locked status, TF, of the Dilation System object, D.

Introduced in R2015a

 release

2-45

release
System object: visionhdl.Dilation
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(D)

Description

release(D) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

D

visionhdl.Dilation System object

Introduced in R2015a

2 System Objects — Alphabetical List

2-46

step
System object: visionhdl.Dilation
Package: visionhdl

Report dilated pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(D,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(D,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, in the pixel stream resulting from a morphological dilate operation on the
neighborhood around each input pixel, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

Note: The object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, first call the release method to unlock the object.

Input Arguments

D

visionhdl.Dilation System object

 step

2-47

pixelIn

Single pixel, specified as a scalar logical value.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single pixel value, representing the closed value based on the pixel neighborhood,
returned as a scalar logical.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2 System Objects — Alphabetical List

2-48

visionhdl.EdgeDetector System object
Package: visionhdl

Find edges of objects in image

Description

visionhdl.EdgeDetector finds the edges in a grayscale pixel stream using Sobel,
Prewitt or Roberts methods. The object convolves the input pixels with derivative
approximation matrices to find the gradient of pixel magnitude along two orthogonal
directions. It then compares the sum of the squares of the gradients to a configurable
threshold to determine if the gradients represent an edge. The Sobel and Prewitt
methods calculate the gradient in horizontal and vertical directions. The Roberts method
calculates the gradients at 45 and 135 degrees.

The object returns a binary image, as a stream of pixel values. If a pixel value is 1, it is
an edge. You can optionally enable output of the gradient values in the two orthogonal
directions at each pixel.

Construction

ED = visionhdl.EdgeDetector returns a System object, ED, that detects edges using
the Sobel method.

ED = visionhdl.EdgeDetector(Name,Value) returns a System object, ED,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

Method

Edge detection algorithm

 visionhdl.EdgeDetector System object

2-49

Specify 'Sobel', 'Prewitt', or 'Roberts' method.

Default: 'Sobel'

BinaryImageOutputPort

Enable the Edge output of the step method when true

When this property is true, the step method returns a binary pixel value representing
whether the object detected an edge at each location in the frame.

Default: true

GradientComponentOutputPorts

Enable the G1 and G2 outputs of the step method when true

When this property is true, the step method returns two values representing the
gradients calculated in two orthogonal directions at each pixel. Set the data type for this
argument in GradientDataType property.

Default: false

ThresholdSource

Source for the gradient threshold value that indicates an edge

You can set the threshold as an input to the step method, or from a property. Set this
property to 'Input port' to set the threshold as an input argument to the step method.
When this property is set to 'Property', set the threshold in the Threshold property.

Default: 'Property'

Threshold

Gradient threshold value that indicates an edge, specified as a scalar numeric value.

The object compares this value squared to the sum of the squares of the gradients. The
object casts this value to the data type of the gradients. This property applies when you
set ThresholdSource to 'Property'.

Default: 20

2 System Objects — Alphabetical List

2-50

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal line.
If you specify a value that is not a power of two, the object uses the next largest power
of two. The object allocates (N - 1)-by-LineBufferSize memory locations to store the
pixels, where N is the number of lines in the differential approximation matrix. If you set
the Method property to 'Sobel' or 'Prewitt', N is 3. If you set the Method property to
'Roberts', N is 2.

Default: 2048

RoundingMethod

Rounding mode used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any
integer or fixed-point data type. This option does not apply when the input is single or
double type.

Default: Floor

OverflowAction

Overflow action used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any
integer or fixed-point data type. This option does not apply when the input is single or
double type.

Default: Wrap

GradientDataType

Data type for the gradient output values, specified as numerictype(signed,WL,FL),
where WL is word length and FL is fraction length in bits.

• 'Full precision'' (default) — Full-precision based on the data type of the pixelIn
argument of the step method, and the coefficients of the derivative approximation
matrices.

• 'custom' — Use the data type defined in theCustomGradientDataType property.

 visionhdl.EdgeDetector System object

2-51

CustomGradientDataType

Data type for the gradient output values, specified as numerictype(signed,WL,FL),
where WL is word length and FL is fraction length in bits.

Default: numerictype(1,8,0)

Methods

clone
Create object having the same property
values

isLocked
Locked status (logical)

release
Allow changes to property values and input
characteristics

step
Detect edges at an image pixel

Examples

Detect edges of a thumbnail image using Sobel method.

% Set dimensions of test image

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('rice.png');

% Select portion of image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

2 System Objects — Alphabetical List

2-52

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

 edgeDetect = visionhdl.EdgeDetector();

% Serialize the test image

% pixel is a vector of intensity values

% ctrl is a vector of control signals accompanying each pixel

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

%[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

[numPixelsPerFrame,~] = size(pixIn);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

edgeOut = false(numPixelsPerFrame,1);

% Input pixel data

for p = 1:numPixelsPerFrame

 [edgeOut(p),ctrlOut(p)] = step(edgeDetect,pixIn(p),ctrlIn(p));

end

% deserializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,edgeOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm
This object implements the algorithms described on the Edge Detector block reference
page.

 visionhdl.EdgeDetector System object

2-53

See Also
Edge Detector | visionhdl.FrameToPixels | vision.EdgeDetector | edge

Introduced in R2015a

2 System Objects — Alphabetical List

2-54

clone
System object: visionhdl.EdgeDetector
Package: visionhdl

Create object having the same property values

Syntax

newED = clone(ED)

Description

newED = clone(ED) creates another instance of the EdgeDetector System object, ED,
that has the same property values. The new object is unlocked and contains uninitialized
states.

Input Arguments

ED

visionhdl.EdgeDetector System object

Output Arguments

newED

New EdgeDetector System object that has the same property values as the original
System object.

Introduced in R2015a

 isLocked

2-55

isLocked
System object: visionhdl.EdgeDetector
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(ED)

Description

TF = isLocked(ED) returns the locked status, TF, of the EdgeDetector System
object, ED.

Introduced in R2015a

2 System Objects — Alphabetical List

2-56

release
System object: visionhdl.EdgeDetector
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(ED)

Description

release(ED) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

ED

visionhdl.EdgeDetector System object

Introduced in R2015a

 step

2-57

step
System object: visionhdl.EdgeDetector
Package: visionhdl

Detect edges at an image pixel

Syntax
[edge,ctrlOut] = step(ED,pixelIn,ctrlIn)

[G1,G2,ctrlOut] = step(ED,pixelIn,ctrlIn)

[edge,ctrlOut] = step(ED,pixelIn,ctrlIn,thresh)

Description
[edge,ctrlOut] = step(ED,pixelIn,ctrlIn) detects edges in the neighborhood
of pixelIn by computing the gradient in two orthogonal directions. The edge output
argument is a binary value indicating whether the sum of the squares of the gradients
for the input pixel is above the threshold indicating an edge.

[G1,G2,ctrlOut] = step(ED,pixelIn,ctrlIn) detects edges in the neighborhood
of pixelIn by computing the gradient in two orthogonal directions. Use this syntax when
you set GradientComponentOutputPorts property to true. The G1 and G2 output
arguments are the gradients calculated in the two orthogonal directions. When you set
the Method property to 'Sobel' or 'Prewitt', the first argument is the vertical gradient,
and the second argument is the horizontal gradient. When you set the Method property
to 'Roberts', the first argument is the 45 degree gradient, and the second argument is
the 135 degree gradient.

[edge,ctrlOut] = step(ED,pixelIn,ctrlIn,thresh) detects edges in the
neighborhood of pixelIn by computing the gradient in two orthogonal directions. Use
this syntax when you set ThresholdSource property to 'InputPort'. The edge output
argument is a binary value indicating whether the sum of the squares of the gradients
was above the threshold, thresh, squared.

You can use any combination of the optional port syntaxes.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and

2 System Objects — Alphabetical List

2-58

format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

Note: The object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, first call the release method to unlock the object.

Input Arguments

ED

visionhdl.EdgeDetector System object.

pixelIn

Intensity of a single pixel, specified as a scalar value.

Supported data types:

• uint or int
• fixdt()

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

thresh

Gradient threshold value that indicates an edge, specified as a scalar numeric value.

The object compares this value squared to the sum of the squares of the gradients. This
argument is accepted when you set ThresholdSource property to 'InputPort'.

 step

2-59

Output Arguments

edge

Pixel value indicating an edge at this pixel, returned as a scalar binary value.

G1

Gradient calculated in the first direction, returned as a scalar value.

This argument is returned when you set GradientComponentOutputPorts property
to true. If you set the Method property to 'Sobel' or 'Prewitt', this argument is the
vertical gradient. When you set the Method property to 'Roberts', this argument is the
45 degree gradient.

Configure the data type of the gradients by using the GradientComponentDataType
and CustomGradientComponent properties.

G2

Gradient calculated in the second direction, returned as a scalar value.

This argument is returned when you set GradientComponentOutputPorts property
to true. If you set the Method property to 'Sobel' or 'Prewitt', this argument is the
horizontal gradient. When you set the Method property to 'Roberts', this argument is
the 135 degree gradient.

Configure the data type of the gradients by using the GradientComponentDataType
and CustomGradientComponent properties.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2 System Objects — Alphabetical List

2-60

visionhdl.Erosion System object
Package: visionhdl

Morphological erode

Description

visionhdl.Erosion replaces each pixel with the local maximum of the neighborhood
around the pixel. The object operates on a stream of binary intensity values.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

Construction

E = visionhdl.Erosion returns a System object, E, that performs morphological
erosion on a binary video stream.

E = visionhdl.Erosion(Name,Value) returns a System object, E, with additional
options specified by one or more Name,Value pair arguments. Name is a property
name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

Neighborhood

Neighborhood for computing local maxima, specified as a matrix or vector of ones and
zeros.

 visionhdl.Erosion System object

2-61

The object supports neighborhoods up to 32×32 pixels. To use a structuring element,
specify the Neighborhood as getnhood(strel(shape)).

Default: ones(3,3)

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal line.
If you specify a value that is not a power of two, the object uses the next largest power of
two. The object allocates neighborhood lines - 1-by-LineBufferSize memory locations
to store the pixels.

Default: 2048

Methods
clone

Create object having the same property
values

isLocked
Locked status (logical)

release
Allow changes to property values and input
characteristics

step
Report eroded pixel value based on
neighborhood

Examples
Perform morphological erosion on a thumbnail image.

% Set dimensions of test image

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('rice.png');

2 System Objects — Alphabetical List

2-62

% Select portion of image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

% Convert to binary image

frmInput = frmInput>128;

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

% Create filter

 merode = visionhdl.Erosion(...

 'Neighborhood',ones(5,5));

% Serialize the test image

% pixel is a vector of intensity values

% ctrl is a vector of control signals accompanying each pixel

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

%[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

[numPixelsPerFrame,~] = size(pixIn);

pixOut = false(numPixelsPerFrame,1);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

% Monitor control signals to determine latency of the object

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 sprintf('valid in at index %d',p)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = step(merode,pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 visionhdl.Erosion System object

2-63

 sprintf('valid out at index %d',p)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

% deserializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Erosion block reference page.

See Also
Erosion | visionhdl.FrameToPixels | vision.MorphologicalErode | imerode |
strel | getnhood

Introduced in R2015a

2 System Objects — Alphabetical List

2-64

clone
System object: visionhdl.Erosion
Package: visionhdl

Create object having the same property values

Syntax

newE = clone(E)

Description

newE = clone(E) creates another instance of the Erosion System object, E, that has
the same property values. The new object is unlocked and contains uninitialized states.

Input Arguments

E

visionhdl.Erosion System object

Output Arguments

newE

New Erosion System object that has the same property values as the original System
object. The new unlocked object contains uninitialized states.

Introduced in R2015a

 isLocked

2-65

isLocked
System object: visionhdl.Erosion
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(E)

Description

TF = isLocked(E) returns the locked status, TF, of the DemosiacInterpolator
System object, E.

Introduced in R2015a

2 System Objects — Alphabetical List

2-66

release
System object: visionhdl.Erosion
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(E)

Description

release(E) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

E

visionhdl.Erosion System object

Introduced in R2015a

 step

2-67

step
System object: visionhdl.Erosion
Package: visionhdl

Report eroded pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(E,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(E,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, in the pixel stream resulting from a morphological erode operation on the
neighborhood around each input pixel, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

Note: The object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, first call the release method to unlock the object.

Input Arguments

E

visionhdl.Erosion System object

2 System Objects — Alphabetical List

2-68

pixelIn

Single pixel, specified as a scalar logical value.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single pixel value, representing the closed value based on the pixel neighborhood,
returned as a scalar logical.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

 visionhdl.FrameToPixels System object

2-69

visionhdl.FrameToPixels System object

Package: visionhdl

Convert full-frame video to pixel stream

Description

visionhdl.visionhdl.FrameToPixels converts color or grayscale full-frame video
to a pixel stream and control structure. The control structure indicates the validity of
each pixel and its location in the frame. The pixel stream format can include padding
pixels around the active frame. You can configure the frame and padding dimensions by
selecting a common video format or specifying custom dimensions. See “Streaming Pixel
Interface” for details of the pixel stream format.

Use this object to generate input for a function targeted for HDL code generation. This
block does not support HDL code generation.

If your design converts frames to a pixel stream and later converts the stream back
to frames, specify the same video format for the FrameToPixels object and the
PixelsToFrame object.

Construction

F2P = visionhdl.FrameToPixels returns a System object, F2P, that serializes a
grayscale 1080×1920 frame into a 1080p pixel stream with standard padding around the
active data.

F2P = visionhdl.FrameToPixels(Name,Value) returns a System object, F2P,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

2 System Objects — Alphabetical List

2-70

Properties

NumComponents

Components of each pixel, specified as 1, 3, or 4. Set to 1 for grayscale video. Set to 3 for
color video, for example, {R,G,B} or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel
for transparency. The step method returns a P-by-NumComponents matrix, where P is
the total number of pixels. The default is 1.

VideoFormat

Dimensions of active and inactive regions of a video frame. To select a predefined format,
specify the VideoFormat property as a string from the options in the first column of
the table. For a custom format, set VideoFormat to Custom, and specify the dimension
properties as integers.

Video

Format

Active

Pixels Per

Line

Active

Video

Lines

Total

Pixels Per

Line

Total

Video

Lines

Starting

Active

Line

Front

Porch

240p 320 240 402 324 1 44
480p 640 480 800 525 36 16
480pH 720 480 858 525 33 16
576p 720 576 864 625 47 12
720p 1280 720 1650 750 25 110
768p 1024 768 1344 806 10 24
1024p 1280 1024 1688 1066 42 48
1080p

(default)
1920 1080 2200 1125 42 88

1200p 1600 1200 2160 1250 50 64
2KCinema 2048 1080 2750 1125 42 639
4KUHDTV 3840 2160 4400 2250 42 88
8KUHDTV 7680 4320 8800 4500 42 88
Custom User-

defined
User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

 visionhdl.FrameToPixels System object

2-71

Note: When using a custom format, the properties you enter for the active and inactive
dimensions of the image must add up to the total frame dimensions.

For the horizontal direction, TotalPixelsPerLine must be greater than or equal
to FrontPorch + ActivePixelsPerLine. The block calculates BackPorch =
TotalPixelsPerLine − FrontPorch − ActivePixelsPerLine.

For the vertical direction, TotalVideoLines must be greater than or equal
to StartingActiveLine + ActiveVideoLines − 1. The block calculates
EndingActiveLine = StartingActiveLine + ActiveVideoLines − 1.

If you specify a format that does not conform to these rules, the object reports an error.

Methods
clone

Create object having the same property
values

isLocked
Locked status (logical)

release
Allow changes to property values and input
characteristics

step
Convert image frame to pixel stream

Examples
Convert custom-size grayscale image to pixel stream. Use the visionhdl.LookupTable
object to convert it to a negative image, then convert the pixel-stream back to full-frame.

% Set dimensions of test image

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('rice.png');

% Select portion of image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

2 System Objects — Alphabetical List

2-72

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

% Create LUT to output the negative of the input image

 tabledata = linspace(255,0,256);

 lut = visionhdl.LookupTable(tabledata);

% Serialize the test image

% pixel is a vector of intensity values

% ctrl is a vector of control signals accompanying each pixel

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

%[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

[numPixelsPerFrame,~] = size(pixIn);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

% Monitor control signals to determine latency of the object

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 sprintf('valid in at index %d',p)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = step(lut,pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 sprintf('valid out at index %d',p)

 foundValOut = p;

 end

end

 visionhdl.FrameToPixels System object

2-73

sprintf('object latency is %d cycles',foundValOut-foundValIn)

% deserializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

See Also
visionhdl.PixelsToFrame | Frame To Pixels

Related Examples
• Pixel-Streaming Design in MATLAB

More About
• “Streaming Pixel Interface”

Introduced in R2015a

2 System Objects — Alphabetical List

2-74

clone
System object: visionhdl.FrameToPixels
Package: visionhdl

Create object having the same property values

Syntax

newF2P = clone(F2P)

Description

newF2P = clone(F2P) creates another instance of the FrameToPixels System
object, F2P, that has the same property values. The new object is unlocked and contains
uninitialized states.

Input Arguments

F2P

visionhdl.FrameToPixels System object

Output Arguments

newF2P

New FrameToPixels System object that has the same property values as the original
object.

Introduced in R2015a

 isLocked

2-75

isLocked
System object: visionhdl.FrameToPixels
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(F2P)

Description

TF = isLocked(F2P) returns the locked status, TF, of the FrameToPixels System
object, F2P.

Introduced in R2015a

2 System Objects — Alphabetical List

2-76

release
System object: visionhdl.FrameToPixels
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(F2P)

Description

release(F2P) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

F2P

visionhdl.FrameToPixels System object

Introduced in R2015a

 step

2-77

step
System object: visionhdl.FrameToPixels
Package: visionhdl

Convert image frame to pixel stream

Syntax
[pixels,ctrlOut] = step(F2P,frm)

Description
[pixels,ctrlOut] = step(F2P,frm)

Converts the input image matrix, frm, to a vector of pixel values, pixels, and an
associated vector of control structures, ctrlOut. The control structure indicates the
validity of each pixel and its location in the frame. The output pixels include padding
around the active image, specified by the VideoFormat property.

See “Streaming Pixel Interface” for details of the pixel stream format.

Note: The object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, first call the release method to unlock the object.

Input Arguments
F2P

visionhdl.FrameToPixels System object

frm

Input image, specified as an ActiveVideoLines-by-ActivePixelsPerLine-
by-NumComponents matrix, where:

2 System Objects — Alphabetical List

2-78

• ActiveVideoLines is the height of the active image
• ActivePixelsPerLine is the width of the active image
• NumComponents is the number of components used to express a single pixel

Set the size of the active image using the VideoFormat property. If the dimensions of im
do not match that specified by VideoFormat, the object returns a warning.

Supported data types:

• uint or int
• fixdt()

• logical

• double or single

Output Arguments

pixels

Pixel values, returned as a P-by-NumComponents matrix, where:

• P is the total number of pixels in the padded image, calculated as
TotalPixelsPerLine × TotalVideoLines

• NumComponents is the number of components used to express a single pixel

Set the size of the padded image using the VideoFormat property. The data type of the
pixel values is the same as im.

ctrlOut

Control structures associated with the output pixels, returned as a P-by-1 vector. P is
the total number of pixels in the padded image, calculated as TotalPixelsPerLine ×
TotalVideoLines. Each structure contains five control signals indicating the validity of
the pixel and its location in the frame. See “Pixel Control Structure”.

Introduced in R2015a

 visionhdl.GammaCorrector System object

2-79

visionhdl.GammaCorrector System object

Package: visionhdl

Apply or remove gamma correction

Description

visionhdl.GammaCorrector applies or removes gamma correction on a stream of
pixels. Gamma correction adjusts linear pixel values so that the modified values fit a
curve. The de-gamma operation performs the opposite operation to obtain linear pixel
values.

Construction

G = visionhdl.GammaCorrector returns a System object that applies or removes
gamma correction on a stream of pixels.

G = visionhdl.GammaCorrector(Name,Value) returns a System object, G,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

G = visionhdl.GammaCorrector(operation,gammaValue,Name,Value) returns
a System object with the Correction property set to operation, the Gamma property
set to gammaValue, and additional options specified by one or more Name,Value pair
arguments.

Input Arguments

operation

Type of correction, specified as either Gamma or De-gamma. This argument sets the
Correction property value.

2 System Objects — Alphabetical List

2-80

gammaValue

Target or current gamma value, specified as a scalar value greater than or equal to 1.
This argument sets the Gamma property value.

Output Arguments

G

visionhdl.GammaCorrector System object

Properties

Correction

Direction of intensity curve adjustment

• Gamma (default) — Apply gamma correction.
• De-gamma — Remove gamma correction.

Gamma

Target or current gamma value, specified as a scalar greater than or equal to 1.

• When you set Correction to Gamma, set this property to the target gamma value of
the output video stream.

• When you set Correction to De-gamma, set this property to the gamma value of the
input video stream.

Default: 2.2

LinearSegment

Option to include a linear segment in the gamma curve, specified as a logical value.
When you set this property to true, the gamma curve has a linear portion near the
origin.

Default: true

 visionhdl.GammaCorrector System object

2-81

BreakPoint

Pixel value that corresponds to the point where the gamma curve and linear segment
meet. Specify Breakpoint as a scalar value between 0 and 1, exclusive. This property
applies only when the LinearSegment property is set to true.

Default: 0.018

Methods

clone
Create object with same property values

isLocked
Locked status (logical)

release
Allow changes to property values and input
characteristics

step
Apply or remove gamma correction on one
pixel

Examples

Use gamma correction to brighten thumbnail image.

% Set dimensions of test image

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('rice.png');

% Select portion of image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer

frm2pix = visionhdl.FrameToPixels(...

2 System Objects — Alphabetical List

2-82

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

 gammacorr = visionhdl.GammaCorrector(...

 'Gamma', 1.75);

% Serialize the test image

% pixel is a vector of intensity values

% ctrl is a vector of control signals accompanying each pixel

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

%[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

[numPixelsPerFrame,~] = size(pixIn);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

for p = 1:numPixelsPerFrame

 [pixOut(p),ctrlOut(p)] = step(gammacorr,pixIn(p),ctrlIn(p));

end

% deserializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

 visionhdl.GammaCorrector System object

2-83

Algorithm

This object implements the algorithms described on the Gamma Corrector block
reference page.

Latency

The GammaCorrector object has a latency of 2 cycles.

See Also
Gamma Corrector | visionhdl.FrameToPixels | vision.GammaCorrector |
imadjust

Introduced in R2015a

2 System Objects — Alphabetical List

2-84

clone
System object: visionhdl.GammaCorrector
Package: visionhdl

Create object with same property values

Syntax

newG = clone(G)

Description

newG = clone(G) creates another instance of the GammaCorrector System object,
newG, with the same property values as input argument G. The new object is unlocked
and contains uninitialized states.

Input Arguments

G

visionhdl.GammaCorrector System object

Output Arguments

newG

New GammaCorrector System object with the same property values as the original
System object.

Introduced in R2015a

 isLocked

2-85

isLocked
System object: visionhdl.GammaCorrector
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(G)

Description

TF = isLocked(G) returns the locked status, TF, of the GammaCorrector System
object, G.

Introduced in R2015a

2 System Objects — Alphabetical List

2-86

release
System object: visionhdl.GammaCorrector
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(G)

Description

release(G) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

G

visionhdl.GammaCorrector System object

Introduced in R2015a

 step

2-87

step
System object: visionhdl.GammaCorrector
Package: visionhdl

Apply or remove gamma correction on one pixel

Syntax

[pixelOut,ctrlOut] = step(G,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(G,pixelIn,ctrlIn) returns the intensity value of
a pixel after gamma correction, and the control signals associated with the pixel. The
input, pixelIn, and output, pixelOut, are scalar values representing a single pixel.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

G

visionhdl.GammaCorrector System object.

2 System Objects — Alphabetical List

2-88

pixelIn

Intensity of a single pixel, specified as a scalar value. For fixed-point data types, the
input word length must be less than or equal to 16.

Supported data types:

• int8 and int16
• uint8 and uint16
• fixdt()

double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Gamma-corrected intensity of a single pixel, specified as a scalar value. The data type of
the output pixel is the same as the data type of pixelIn.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

 visionhdl.Histogram System object

2-89

visionhdl.Histogram System object
Package: visionhdl

Frequency distribution

Description

visionhdl.Histogram computes the frequency distribution of pixel values in a video
stream. You can configure the number and size of the bins. The object provides a read
interface for accessing each bin. The object keeps a running histogram until you clear the
bin values.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface allows object operation independent of image size and format,
and easy connection with other Vision HDL Toolbox objects. The step method accepts
pixel data as integer, fixed-point, or floating-point data types. The step method accepts
control signals as a structure containing five signals. These signals indicate the validity
of each pixel and the location of each pixel in the frame.

Construction

H = visionhdl.Histogram returns a System object, H, that computes image
histograms over 256 bins, with a bin size of 16 bits.

H = visionhdl.Histogram(Name,Value) returns a System object, H, with
additional options specified by one or more Name,Value pair arguments. Name is
a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

NumBins

Number of bins for the histogram.

2 System Objects — Alphabetical List

2-90

Choose the number of bins depending on the input word length (WL). If the number of
bins is less than 2WL, the object truncates the least-significant bits of each pixel. If the
number of bins is greater than 2WL, the object warns about an inefficient use of hardware
resources.

Default: 256

OutputDataType

Data type of the histogram values.

• double

• single

• Unsigned fixed point (default)

double and single data types are supported for simulation but not for HDL code
generation.

OutputWordLength

Histogram bin value word length when OutputDataType is Unsigned fixed point.
If a bin overflows, the count saturates and the object shows a warning.

Default: 16

Methods

clone
Create object having the same property
values

isLocked
Locked status (logical)

release
Allow changes to property values and input
characteristics

step
Sort input pixel into histogram bin, or read
histogram bin

 visionhdl.Histogram System object

2-91

Examples

Accumulate histogram for a thumbnail image.

% Set dimensions of test image

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('rice.png');

% Select portion of image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

 histo = visionhdl.Histogram();

% Serialize the test image

% pixel is a vector of intensity values

% ctrl is a vector of control signals accompanying each pixel

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

%[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

[numPixelsPerFrame,~] = size(pixIn);

bins = str2double(histo.NumBins);

readRdy = false(numPixelsPerFrame,1);

dataOut = zeros(bins-1,1,'uint8');

validOut = false(bins-1,1);

dummyCtrl = pixelcontrolstruct(0,0,0,0,0);

% Initialization

2 System Objects — Alphabetical List

2-92

for p = 1:bins

 step(histo,uint8(0),dummyCtrl,uint8(0),false);

end

% Input pixel data

for p = 1:numPixelsPerFrame

 [~,readRdy(p),~] = step(histo,pixIn(p),ctrlIn(p),uint8(0),false);

end

% Read bin values

if readRdy(numPixelsPerFrame)

 for p = 1:bins-1

 [dataOut(p),~,validOut(p)] = step(histo,uint8(0),dummyCtrl,uint8(p-1),false);

 end

end

% Read final bin value and initiate binReset.

step(histo,uint8(0),dummyCtrl,uint8(bins-1),true);

% Final bin value is ready after 2 calls to step.

step(histo,uint8(0),dummyCtrl,uint8(0),false);

[finalBin,~,finalValidOut] = step(histo,uint8(0),dummyCtrl,uint8(0),false);

% graph bin values

dataOut = dataOut(validOut==1);

dataOut(bins) = finalBin;

figure

bar(dataOut)

title('Histogram of Input Image')

% binReset

for p = 1:bins

 step(histo,uint8(0),dummyCtrl,uint8(0),false);

end

Algorithm

This object implements the algorithms described on the Histogram block reference page.

Latency

The object returns readRdy = true 2 calls to the step method after receiving the last
pixel of a frame. The object indicates the last pixel of a frame by vEnd = true. While

 visionhdl.Histogram System object

2-93

readRdy is true, the object captures binAddr requests on each subsequent call to the
step method. The object returns the corresponding histogram bin value in dataOut two
calls to the step method later.

See Also
Histogram | visionhdl.FrameToPixels | vision.Histogram | imhist

Introduced in R2015a

2 System Objects — Alphabetical List

2-94

clone
System object: visionhdl.Histogram
Package: visionhdl

Create object having the same property values

Syntax

newH = clone(H)

Description

newH = clone(H) creates another instance of the Histogram System object, H, that
has the same property values. The new object is unlocked and contains uninitialized
states.

Input Arguments

H

visionhdl.Histogram System object

Output Arguments

newH

New Histogram System object that has the same property values as the original System
object. The new unlocked object contains uninitialized states.

Introduced in R2015a

 isLocked

2-95

isLocked
System object: visionhdl.Histogram
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, of the Histogram System object, H.

Introduced in R2015a

2 System Objects — Alphabetical List

2-96

release
System object: visionhdl.Histogram
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

H

visionhdl.Histogram System object

Introduced in R2015a

 step

2-97

step

System object: visionhdl.Histogram
Package: visionhdl

Sort input pixel into histogram bin, or read histogram bin

Syntax

step(H,~,~,~,~)

[dataOut,readRdy,validOut] = step(H,pixelIn,ctrlIn,~,0)

[dataOut,readRdy,validOut] = step(H,~,~,binAddr,0)

[dataOut,readRdy,validOut] = step(H,~,~,binAddr,binReset)

Description

step(H,~,~,~,~) performs an initial reset phase before processing input data. After
object creation or reset, call step with dummy arguments for NumberOfBins cycles
before applying data. You do not have to assert binReset during this phase.

[dataOut,readRdy,validOut] = step(H,pixelIn,ctrlIn,~,0) adds the input
pixel, pixelIn, to the internal histogram. Call step with this syntax for each pixel in a
frame. The object returns readRdy true when the histogram for the frame is complete.

[dataOut,readRdy,validOut] = step(H,~,~,binAddr,0) reads the histogram
bin specified by binAddr. Use this syntax when readRdy is returned true. Call step
with this syntax for each histogram bin. The bin value at binAddr is returned in dataOut,
with validOut set to true, after two further calls to step.

[dataOut,readRdy,validOut] = step(H,~,~,binAddr,binReset) resets the
histogram values when binReset is true. You can initiate the reset while simultaneously
giving the final binAddr. Before applying more video data, complete the reset sequence
by calling step with dummy arguments for NumBins cycles.

To visualize the sequence of operations, see the timing diagrams in the “Algorithm”
section of the Histogram block page.

2 System Objects — Alphabetical List

2-98

Note: The object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, first call the release method to unlock the object.

Input Arguments

H

visionhdl.Histogram System object.

pixelIn

Single pixel, specified by a scalar value.

Supported data types:

• uint

• fixdt(0,N,0)

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

binAddr

Bin number request for reading histogram values. This input is captured after readRdy is
returned true. The data type is fixdt(0,N,0), N = 5,6,...,10. The word length must be
log2(NumBins).

binReset

Triggers histogram RAM reset when true. Reset takes NumBins cycles to clear all
locations. Input signals are ignored during this interval. Data type is logical.

 step

2-99

Output Arguments

readRdy

Flag indicating when the histogram bins are ready for read, returned as a logical
value. The object returns readRdy set to true two cycles after the final pixel of a frame.

dataOut

Histogram value for the bin requested in binAddr. The OutputDataType property
specifies the data type for this output.

validOut

Flag indicating the validity of dataOut, returned as a logical value.

Introduced in R2015a

2 System Objects — Alphabetical List

2-100

visionhdl.ImageFilter System object
Package: visionhdl

2-D FIR filtering

Description
visionhdl.visionhdl.ImageFilter performs two-dimensional FIR filtering of a
pixel stream.

Construction
F = visionhdl.ImageFilter returns a System object, F, that performs two-
dimensional FIR filtering of an input pixel stream.

F = visionhdl.ImageFilter(Name,Value) returns a 2-D FIR filter System object,
F, with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

F = visionhdl.ImageFilter(coeff, lineSize,Name,Value) returns a 2-D FIR
filter System object, F, with the Coefficients property set to coeff, LineBufferSize
property to lineSize, and additional options specified by one or more Name,Value pair
arguments.

Input Arguments

coeff

Filter coefficients specified as a vector or matrix. The maximum size along any dimension
of a matrix or vector is 16. This argument sets the Coefficients property value.

lineSize

Size of the line memory buffer, as a power of 2 that accommodates the number of active
pixels in a horizontal line. This argument sets the LineBufferSize property value.

 visionhdl.ImageFilter System object

2-101

Output Arguments

F

visionhdl.ImageFilter System object.

Properties

Coefficients

Coefficients of the desired filter, specified as a vector or matrix of any numeric type. The
maximum size along any dimension of a matrix or vector is 16.

double and single data types are supported for simulation but not for HDL code
generation.

Default: [1,0;0,-1]

CoefficientsDataType

Method for determining the data type of the filter coefficients.

• 'Same as first input ' (default) — Data type used to represent the coefficients is
the same as the data type of the pixelIn argument of the step method.

• 'custom' — Use the data type defined in theCustomCoefficientsDataType
property.

CustomCoefficientsDataType

Data type for the filter coefficients, specified as numerictype(signed,WL,FL), where
WL is word length and FL is fraction length in bits. This property applies when you set
CoefficientsDataType to custom.

Default: numerictype(true,16,15)

CustomOutputDataType

Data type for the output pixels, specified as numerictype(signed,WL,FL), where WL
is word length and FL is fraction length in bits. This property applies only when you set
OutputDataType to custom.

Default: numerictype(true,8,0)

2 System Objects — Alphabetical List

2-102

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal line.
If you specify a value that is not a power of two, the object uses the next largest power of
two. The object allocates coefficient rows - 1-by-LineBufferSize memory locations to
store the pixels.

Default: 2048

OutputDataType

Method for determining the data type of the output pixels

• 'Same as first input' (default) — Data type used to represent the output pixels is
the same as the data type of the pixelIn argument of the step method.

• 'full precision' — Use full precision rules. The System object computes internal
arithmetic and output data types using full precision rules. These rules provide the
most accurate fixed-point numerics. These rules guarantee that no quantization
occurs within the object. Bits are added, as needed, to ensure that no rounding or
overflow occurs.

• custom — Use the data type you define in theCustomOutputDataType property.

OverflowAction

Overflow action used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any
integer or fixed-point data type. This option does not apply when the input is single or
double type.

Default: Wrap

PaddingMethod

Method for padding the boundary of the input image

• 'Constant' (default) — Pad input matrix with a constant value.
• 'Replicate' — Repeat the value of pixels at the edge of the image.
• 'Symmetric' — Pad input matrix with its mirror image.

 visionhdl.ImageFilter System object

2-103

PaddingValue

Constant value used to pad the boundary of the input image. This property applies when
you set PaddingMethod to 'Constant'. The object casts this value to the same data type
as the input pixel.

Default: 0

RoundingMethod

Rounding mode used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any
integer or fixed-point data type. This option does not apply when the input is single or
double type.

Default: Floor

Methods
clone

Create object with same property values
isLocked

Locked status (logical)
release

Allow changes to property values and input
characteristics

step
2-D FIR filtering

Examples
Implement a 2-D blur filter on a thumbnail image.

% Set dimensions of test image

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('rice.png');

2 System Objects — Alphabetical List

2-104

% Select portion of image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

% Create filter

 filt2d = visionhdl.ImageFilter(...

 'Coefficients',ones(2,2)/4,...

 'CoefficientsDataType','Custom',...

 'CustomCoefficientsDataType',numerictype(0,1,2),...

 'PaddingMethod','Symmetric');

% Serialize the test image

% pixel is a vector of intensity values

% ctrl is a vector of control signals accompanying each pixel

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

%[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

[numPixelsPerFrame,~] = size(pixIn);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

% Monitor control signals to determine latency of the object

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 sprintf('valid in at index %d',p)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = step(filt2d,pixIn(p),ctrlIn(p));

 visionhdl.ImageFilter System object

2-105

 if (ctrlOut(p).valid && foundValOut==0)

 sprintf('valid out at index %d',p)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

% deserializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Image Filter block reference
page.

See Also
Image Filter | visionhdl.FrameToPixels | vision.ImageFilter | imfilter

Introduced in R2015a

2 System Objects — Alphabetical List

2-106

clone
System object: visionhdl.ImageFilter
Package: visionhdl

Create object with same property values

Syntax

newF = clone(F)

Description

newF = clone(F) creates another instance of the ImageFilter System object, F, with
the same property values. The new object is unlocked and contains uninitialized states.

Input Arguments

F

visionhdl.ImageFilter System object.

Output Arguments

newF

New ImageFilter System object with the same property values as the original System
object.

Introduced in R2015a

 isLocked

2-107

isLocked
System object: visionhdl.ImageFilter
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(F)

Description

TF = isLocked(F) returns the locked status, TF, of the ImageFilter System object, F.

Introduced in R2015a

2 System Objects — Alphabetical List

2-108

release
System object: visionhdl.ImageFilter
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(F)

Description

release(F) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Note: You can use the release method on a System object in code generated from
MATLAB®, but once you release its resources, you cannot use that System object again.

Input Arguments

F

visionhdl.ImageFilter System object

Introduced in R2015a

 step

2-109

step
System object: visionhdl.ImageFilter
Package: visionhdl

2-D FIR filtering

Syntax

[pixelOut,ctrlOut] = step(F,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(F,pixelIn,ctrlIn) returns the next pixel, pixelOut,
of the filtered image resulting from applying the coefficients in the Coefficients
property to the image described by the input pixel stream, pixelIn.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

F

visionhdl.ImageFilter System object.

pixelIn

Single pixel, specified as a scalar value.

Supported data types:

2 System Objects — Alphabetical List

2-110

• uint or int
• fixdt()

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single filtered pixel, returned as a scalar value.

Configure the data type of the output pixel by using the OutputDataType and
CustomOutputDataType properties.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

 visionhdl.ImageStatistics System object

2-111

visionhdl.ImageStatistics System object
Package: visionhdl

Mean, variance, and standard deviation

Description

visionhdl.ImageStatistics calculates the mean, variance, and standard deviation
of streaming video data. Each calculation is performed over all pixels in the input region
of interest (ROI). The object implements the calculations using hardware-efficient
algorithms.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface allows object operation independent of image size and format,
and easy connection with other Vision HDL Toolbox objects. The step method accepts
pixel data as integer, fixed-point, or floating-point data types. The step method accepts
control signals as a structure containing five signals. These signals indicate the validity
of each pixel and the location of each pixel in the frame.

• To change the size and dimensions of the ROI, you can manipulate the input video
stream control signals. See “Regions of Interest” on page 1-69.

• The number of valid pixels in the input image affect the accuracy of the mean
approximation. To avoid approximation error, use an image that contains fewer
than 64 pixels, or a multiple of 64 pixels. For details of the mean approximation, see
“Algorithm” on page 1-66.

Construction

S = visionhdl.ImageStatistics returns a System object, S, that calculates the
mean, variance, and standard deviation of each frame of a video stream.

S = visionhdl.ImageStatistics(Name,Value) returns a System object, S,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

2 System Objects — Alphabetical List

2-112

Properties

mean

Calculate the mean of each input frame. If you set this property to false, the step
method does not return this output.

Default: true

variance

Calculate the variance of each input frame. If you set this property to false, the step
method does not return this output.

Default: true

stdDev

Calculate the standard deviation of each input frame. If you set this property to false,
the step method does not return this output.

Default: true

Methods

clone
Create object having the same property
values

isLocked
Locked status (logical)

release
Allow changes to property values and input
characteristics

step
Calculate the contribution of one pixel to
the mean, variance, and standard deviation
of a video stream

 visionhdl.ImageStatistics System object

2-113

Examples

Compute the mean, variance, and standard deviation of a thumbnail image.

% Set dimensions of test image

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('rice.png');

% Select portion of image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

 stats = visionhdl.ImageStatistics();

% Serialize the test image

% pixel is a vector of intensity values

% ctrl is a vector of control signals accompanying each pixel

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

%[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

[numPixelsPerFrame,~] = size(pixIn);

validOut = false(numPixelsPerFrame,1);

mean = zeros(numPixelsPerFrame,1,'uint8');

variance = zeros(numPixelsPerFrame,1,'uint8');

stddev = zeros(numPixelsPerFrame,1,'uint8');

% Input pixel data

for p = 1:numPixelsPerFrame

2 System Objects — Alphabetical List

2-114

 [mean(p),variance(p),stddev(p),validOut(p)] = step(stats,pixIn(p),ctrlIn(p));

end

mean = mean(validOut==1)

variance = variance(validOut==1)

stddev = stddev(validOut==1)

Algorithm

This object implements the algorithms described on the Image Statistics block reference
page.

Latency

The latency from vEnd to validOut depends on what calculations you select.

When the object receives a true vEnd signal, it combines the remaining data in the three
levels of mean calculation to calculate the final output. This final step takes 4 cycles per
level, resulting in a maximum of 12 cycles of latency between the input vEnd signal and
the validOut signal. Once the mean is available, the variance calculation takes 4 cycles.
The square root logic requires input word length (IWL) cycles of latency.

If a calculation is not selected, and is not needed for other selected calculations, that logic
is excluded from the generated HDL code.

The table shows the calculation logic and latency for various object configurations.

MeanVarianceStd.
Deviation

Logic Excluded From
HDL

Latency (cycles)

✓ ✓ ✓ [4,8, or 12]+4+IWL
✓ variance and square

root
[4,8, or 12] (depending on input size relative to
the 64-bit accumulators)

 ✓ square root [4,8, or 12]+4
 ✓ [4,8, or 12]+4+IWL
✓ ✓ square root [4,8, or 12]+4
✓ ✓ [4,8, or 12]+4+IWL
 ✓ ✓ [4,8, or 12]+4+IWL

 visionhdl.ImageStatistics System object

2-115

See Also
Image Statistics | vision.Variance | visionhdl.FrameToPixels | vision.Mean |
vision.StandardDeviation | mean2 | std2

Introduced in R2015a

2 System Objects — Alphabetical List

2-116

clone
System object: visionhdl.ImageStatistics
Package: visionhdl

Create object having the same property values

Syntax

newS = clone(S)

Description

newS = clone(S) creates another instance of the ImageStatistics System object, S,
that has the same property values. The new object is unlocked and contains uninitialized
states.

Input Arguments

S

visionhdl.ImageStatistics System object

Output Arguments

newS

New ImageStatistics System object that has the same property values as the original
System object.

Introduced in R2015a

 isLocked

2-117

isLocked
System object: visionhdl.ImageStatistics
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(S)

Description

TF = isLocked(S) returns the locked status, TF, of the ImageStatistics System
object, S.

Introduced in R2015a

2 System Objects — Alphabetical List

2-118

release
System object: visionhdl.ImageStatistics
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(S)

Description

release(S) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

S

visionhdl.ImageStatisticsSystem object

Introduced in R2015a

 step

2-119

step

System object: visionhdl.ImageStatistics
Package: visionhdl

Calculate the contribution of one pixel to the mean, variance, and standard deviation of a
video stream

Syntax

[mean,variance,stdDeviation,validOut] = step(S,pixelIn,ctrlIn)

Description

[mean,variance,stdDeviation,validOut] = step(S,pixelIn,ctrlIn)

incorporates the new pixel value, pixelIn, into calculations of video frame statistics. The
control signals associated with each pixel, ctrlIn, indicate the frame boundaries. When
validOut is true, the output values of mean, variance, and stdDeviation represent the
statistics for the most recent input frame completed. The number of statistics returned
depends on the object property settings.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface allows object operation independent of image size and format,
and easy connection with other Vision HDL Toolbox objects. The step method accepts
pixel data as integer, fixed-point, or floating-point data types. The step method accepts
control signals as a structure containing five signals. These signals indicate the validity
of each pixel and the location of each pixel in the frame.

Note: The object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, first call the release method to unlock the object.

2 System Objects — Alphabetical List

2-120

Input Arguments

S

visionhdl.ImageStatistics System object.

pixelIn

Single pixel, specified as a scalar value.

Supported data types:

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16
• double and single data types are supported for simulation but not for HDL code

generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

mean

Mean of the most recent frame of video input, returned as a scalar value.

The data type is the same as pixelIn.

variance

Variance of the most recent frame of video input, returned as a scalar value.

The data type is the same as pixelIn. The fixed-point output word length is double the
input word length.

stdDeviation

Standard deviation of the most recent frame of video input, returned as a scalar value.

 step

2-121

The data type is the same as pixelIn. Fixed-point output word length is double the
input word length.

validOut

Validity of output statistics. When the object completes the calculations, it returns true.
When this output is true, the other output arguments are valid. Data type is logical.

Introduced in R2015a

2 System Objects — Alphabetical List

2-122

visionhdl.LookupTable System object
Package: visionhdl

Map input pixel to output pixel using custom rule

Description
The visionhdl.LookupTable System object uses a custom one-to-one map to convert
between an input pixel value and an output pixel value.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

Construction
LUT = visionhdl.LookupTable returns a System object, LUT, that performs a one-
to-one mapping between the input pixel and output pixel, according to the lookup table
contents.

LUT = visionhdl.LookupTable(tabledata) returns a lookup table System object,
LUT, with the table contents set to TABLEDATA.

Input Arguments

tabledata

One-to-one correspondence between input pixels and output pixels, specified as a vector.
This argument sets the Table property value.

Output Arguments

LUT

visionhdl.visionhdl.LookupTable System object

 visionhdl.LookupTable System object

2-123

Properties
Table

Map between input pixel values and output pixel values.

• The table data is a vector, row or column, of any data type. The data type of the table
data determines that of pixelOut. See step (visionhdl.LookupTable) method.

• The length of the table data must equal 2WordLength, where WordLength is the size, in
bits, of pixelIn. See step (visionhdl.LookupTable) method.

• The smallest representable value of the input data type maps to the first element
of the table, the second smallest value maps to the second element, and so on. For
example, if pixelIn has a data type of fixdt(0,3,1), the input value 0 maps to the
first element of the table, input value 0.5 maps to the second element, 1 maps to the
third, and so on.

Default: uint8(0:1:255)

Methods
clone

Create object with same property values
isLocked

Locked status (logical)
release

Allow changes to property values and input
characteristics

step
Map input pixel to output pixel based on
table contents

Examples
Create negative image by flipping pixel values with a lookup table.

% Set dimensions of test image

frmActivePixels = 64;

frmActiveLines = 48;

2 System Objects — Alphabetical List

2-124

frmOrig = imread('rice.png');

% Select portion of image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

 tabledata = linspace(255,0,256);

 lut = visionhdl.LookupTable(tabledata);

% Serialize the test image

% pixel is a vector of intensity values

% ctrl is a vector of control signals accompanying each pixel

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

%[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

[numPixelsPerFrame,~] = size(pixIn);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

for p = 1:numPixelsPerFrame

 [pixOut(p),ctrlOut(p)] = step(lut,pixIn(p),ctrlIn(p));

end

% deserializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

 visionhdl.LookupTable System object

2-125

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Lookup Table block reference
page.

Latency

The LookupTable object has a latency of 2 cycles.

See Also
Lookup Table | visionhdl.FrameToPixels

Introduced in R2015a

2 System Objects — Alphabetical List

2-126

clone
System object: visionhdl.LookupTable
Package: visionhdl

Create object with same property values

Syntax

newLUT = clone(LUT)

Description

newLUT = clone(LUT) creates another instance of the LookupTable System object,
newLUT, with the same property values as input argument LUT. The new object is
unlocked and contains uninitialized states.

Input Arguments

LUT

visionhdl.LookupTable System object

Output Arguments

newLUT

New LookupTable System object with the same property values as the original System
object.

Introduced in R2015a

 isLocked

2-127

isLocked
System object: visionhdl.LookupTable
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(LUT)

Description

TF = isLocked(LUT) returns the locked status, TF, of the LookupTable System
object, LUT.

Introduced in R2015a

2 System Objects — Alphabetical List

2-128

release
System object: visionhdl.LookupTable
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(LUT)

Description

release(LUT) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

LUT

visionhdl.LookupTable System object

Introduced in R2015a

 step

2-129

step
System object: visionhdl.LookupTable
Package: visionhdl

Map input pixel to output pixel based on table contents

Syntax
[pixelOut,ctrlOut] = step(LUT,pixelIn,ctrlIn)

Description
[pixelOut,ctrlOut] = step(LUT,pixelIn,ctrlIn) returns the pixel value,
pixelOut, located in the table at the address specified by the input pixel value, pixelIn.
The object passes the control signals, ctrlIn, through and aligns the output control
signals, ctrlOut, with the output data.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments
LUT

visionhdl.LookupTable System object

2 System Objects — Alphabetical List

2-130

pixelIn

Input pixel, specified as a scalar value. For unsigned fixed-point data types, the input
word length must be less than or equal to 16.

Supported data types:

• logical

• uint8 or uint16
• fixdt()

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Output pixel, returned as a scalar value. The data type of the output is the same as the
data type of the entries you specify in the Table property.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

 visionhdl.MedianFilter System object

2-131

visionhdl.MedianFilter System object

Package: visionhdl

2-D median filtering

Description

visionhdl.MedianFilter performs 2-D median filtering on a pixel stream. The object
replaces each pixel value with the median value of the adjacent pixels.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

Construction

MF = visionhdl.MedianFilter returns a System object, MF, that performs two-
dimensional median filtering of serial pixel data.

MF = visionhdl.MedianFilter(Name,Value) returns a median filter System object,
MF, with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

MF = visionhdl.MedianFilter(size,Name,Value) returns a median filter System
object, MF, with the NeighborhoodSize property set to size and additional options
specified by one or more Name,Value pair arguments.

2 System Objects — Alphabetical List

2-132

Input Arguments

size

Size in pixels of the image region used to compute the median. This argument sets the
NeighborhoodSize property value.

Output Arguments

MF

visionhdl.MedianFilter System object.

Properties

NeighborhoodSize

Neighborhood size, in pixels.

• '3×3' (default)
• '5×5'
• '7×7'

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal line.
If you specify a value that is not a power of two, the object uses the next largest power of
two. The object allocates N - 1-by-LineBufferSize memory locations to store the pixels
used to compute the median value. N is the number of lines in the square region specified
in Neighborhood size.

Default: 2048

PaddingMethod

Method for padding the boundary of the input image

• 'Constant' — Pad input matrix with a constant value.
• 'Replicate' — Repeat the value of pixels at the edge of the image.

 visionhdl.MedianFilter System object

2-133

• 'Symmetric' (default) — Pad image edge with its mirror image.

PaddingValue

Constant value used to pad the boundary of the input image. This property applies when
you set PaddingMethod to 'Constant'. The object casts this value to the same data type
as the input pixel.

Default: 0

Methods
clone

Create object with same property values
isLocked

Locked status (logical)
release

Allow changes to property values and input
characteristics

step
Median pixel value of neighborhood

Examples
Implement a 5×5 median filter on a thumbnail image.

% Set dimensions of test image

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('rice.png');

% Select portion of image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer

frm2pix = visionhdl.FrameToPixels(...

2 System Objects — Alphabetical List

2-134

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

% Create filter

 mfilt = visionhdl.MedianFilter(...

 'NeighborhoodSize','5x5');

% Serialize the test image

% pixel is a vector of intensity values

% ctrl is a vector of control signals accompanying each pixel

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

%[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

[numPixelsPerFrame,~] = size(pixIn);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

% Monitor control signals to determine latency of the object

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 sprintf('valid in at index %d',p)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = step(mfilt,pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 sprintf('valid out at index %d',p)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

% deserializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 visionhdl.MedianFilter System object

2-135

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Median Filter block reference
page.

See Also
Median Filter | visionhdl.FrameToPixels | vision.MedianFilter | medfilt2

Introduced in R2015a

2 System Objects — Alphabetical List

2-136

clone
System object: visionhdl.MedianFilter
Package: visionhdl

Create object with same property values

Syntax

newF = clone(F)

Description

newF = clone(F) creates another instance of the MedianFilter System object, F,
with the same property values. The new object is unlocked and contains uninitialized
states.

Input Arguments

F

visionhdl.MedianFilter System object

Output Arguments

newF

New MedianFilter System object with the same property values as the original System
object.

Introduced in R2015a

 isLocked

2-137

isLocked
System object: visionhdl.MedianFilter
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(F)

Description

TF = isLocked(F) returns the locked status, TF, of the MedianFilter System object,
F.

Introduced in R2015a

2 System Objects — Alphabetical List

2-138

release
System object: visionhdl.MedianFilter
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(F)

Description

release(F) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

F

visionhdl.MedianFilter System object

Introduced in R2015a

 step

2-139

step
System object: visionhdl.MedianFilter
Package: visionhdl

Median pixel value of neighborhood

Syntax
[pixelOut,ctrlOut] = step(F,pixelIn,ctrlIn)

Description
[pixelOut,ctrlOut] = step(F,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, in the filtered pixel stream resulting from calculating the median of the
neighborhood around each input pixel, pixelIn. Before filtering, the object pads image
edges according to the PaddingMethod property.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments
F

visionhdl.MedianFilter System object.

2 System Objects — Alphabetical List

2-140

pixelIn

Single pixel, specified as a scalar value.

Supported data types:

• uint or int
• fixdt(~,N,0)

• logical

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single pixel value representing the median of its neighborhood, returned as a scalar
value.

The data type is the same as the data type of pixelIn.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

 visionhdl.Opening System object

2-141

visionhdl.Opening System object
Package: visionhdl

Morphological open

Description

visionhdl.Opening performs a morphological erosion operation, followed by a
morphological dilation operation, using the same neighborhood for both calculations. The
object operates on a stream of binary intensity values.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

Construction

O = visionhdl.Opening returns a System object, O, that performs morphological open
on a binary video stream.

O = visionhdl.Opening(Name,Value) returns a System object, O, with additional
options specified by one or more Name,Value pair arguments. Name is a property
name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

Neighborhood

Neighborhood for computing local maxima and minima, specified as a matrix or vector of
ones and zeros.

2 System Objects — Alphabetical List

2-142

The object supports neighborhoods up to 32×32 pixels. To use a structuring element,
specify the Neighborhood as getnhood(strel(shape)).

Default: ones(3,3)

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal line.
If you specify a value that is not a power of two, the object uses the next largest power of
two. The object allocates neighborhood lines - 1-by-LineBufferSize memory locations
to store the pixels.

Default: 2048

Methods
clone

Create object having the same property
values

isLocked
Locked status (logical)

release
Allow changes to property values and input
characteristics

step
Report opened pixel value based on
neighborhood

Examples
Perform morphological open on a thumbnail image.

% Set dimensions of test image

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('rice.png');

 visionhdl.Opening System object

2-143

% Select portion of image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

% Convert to binary image

frmInput = frmInput>128;

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

% Create filter

 mopen = visionhdl.Opening(...

 'Neighborhood',ones(5,5));

% Serialize the test image

% pixel is a vector of intensity values

% ctrl is a vector of control signals accompanying each pixel

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

%[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

[numPixelsPerFrame,~] = size(pixIn);

pixOut = false(numPixelsPerFrame,1);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

% Monitor control signals to determine latency of the object

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 sprintf('valid in at index %d',p)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = step(mopen,pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

2 System Objects — Alphabetical List

2-144

 sprintf('valid out at index %d',p)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

% deserializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Opening block reference page.

See Also
Opening | visionhdl.FrameToPixels | vision.MorphologicalOpen | imopen |
strel | getnhood

Introduced in R2015a

 clone

2-145

clone
System object: visionhdl.Opening
Package: visionhdl

Create object having the same property values

Syntax

newH = clone(O)

Description

newH = clone(O) creates another instance of the Opening System object, O, that has
the same property values. The new object is unlocked and contains uninitialized states.

Input Arguments

O

visionhdl.Opening System object

Output Arguments

newO

New Opening System object that has the same property values as the original System
object. The new unlocked object contains uninitialized states.

Introduced in R2015a

2 System Objects — Alphabetical List

2-146

isLocked
System object: visionhdl.Opening
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(O)

Description

TF = isLocked(O) returns the locked status, TF, of the DemosiacInterpolator
System object, O.

Introduced in R2015a

 release

2-147

release
System object: visionhdl.Opening
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(O)

Description

release(O) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

O

visionhdl.Opening System object

Introduced in R2015a

2 System Objects — Alphabetical List

2-148

step
System object: visionhdl.Opening
Package: visionhdl

Report opened pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(O,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(O,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, in the pixel stream resulting from a morphological open operation on the
neighborhood around each input pixel, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. The step method accepts and returns control
signals as a structure containing five signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame.

Note: The object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, first call the release method to unlock the object.

Input Arguments

O

visionhdl.Opening System object

 step

2-149

pixelIn

Single pixel, specified as a scalar logical value.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single pixel value, representing the closed value based on the pixel neighborhood,
returned as a scalar logical.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2 System Objects — Alphabetical List

2-150

visionhdl.PixelsToFrame System object

Package: visionhdl

Convert pixel stream to full-frame video

Description

visionhdl.visionhdl.PixelsToFrame converts a color or grayscale pixel stream
and control structures into full-frame video. The control structure indicates the validity
of each pixel and its location in the frame. The pixel stream format can include padding
pixels around the active frame. You can configure the frame and padding dimensions by
selecting a common video format or specifying custom dimensions. See “Streaming Pixel
Interface” for details of the pixel stream format.

Use this object to convert the output of a function targeted for HDL code generation back
to frames. This object does not support HDL code generation.

If your design converts frames to a pixel stream and later converts the stream back
to frames, specify the same video format for the FrameToPixels object and the
PixelsToFrame object.

Construction

P2F = visionhdl.PixelsToFrame returns a System object, P2F, that converts a
1080p pixel stream, with standard padding, to a grayscale 1080×1920 frame.

P2F = visionhdl.PixelsToFrame(Name,Value) returns a System object, P2F,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

 visionhdl.PixelsToFrame System object

2-151

Properties

NumComponents

Components of each pixel, specified as 1, 3, or 4. Set to 1 for grayscale video. Set to 3 for
color video, for example, {R,G,B} or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel
for transparency. The step method expects a matrix of P-by-NumComponents values,
where P is the total number of pixels. The default is 1.

VideoFormat

Dimensions of the active region of a video frame. To select a predefined format, specify
the VideoFormat property as a string from the options in the first column of the
table. For a custom format, set VideoFormat to 'Custom', and specify the dimensional
properties as integers.

Video Format Active Pixels

Per Line

Active Video Lines

240p 320 240
480p 640 480
480pH 720 480
576p 720 576
720p 1280 720
768p 1024 768
1024p 1280 1024
1080p (default) 1920 1080
1200p 1600 1200
2KCinema 2048 1080
4KUHDTV 3840 2160
8KUHDTV 7680 4320
Custom User-

defined
User-
defined

2 System Objects — Alphabetical List

2-152

Methods

clone
Create object having the same property
values

isLocked
Locked status (logical)

release
Allow changes to property values and input
characteristics

step
Convert pixel stream to image frame

Examples

Convert custom-size grayscale image to pixel stream. Use the visionhdl.LookupTable
object to convert it to a negative image, then convert the pixel-stream back to full-frame.

% Set dimensions of test image

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('rice.png');

% Select portion of image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

 visionhdl.PixelsToFrame System object

2-153

% Create LUT to output the negative of the input image

 tabledata = linspace(255,0,256);

 lut = visionhdl.LookupTable(tabledata);

% Serialize the test image

% pixel is a vector of intensity values

% ctrl is a vector of control signals accompanying each pixel

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

%[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

[numPixelsPerFrame,~] = size(pixIn);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

% Monitor control signals to determine latency of the object

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 sprintf('valid in at index %d',p)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = step(lut,pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 sprintf('valid out at index %d',p)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

% deserializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

2 System Objects — Alphabetical List

2-154

See Also
visionhdl.FrameToPixels | Pixels To Frame

Related Examples
• Pixel-Streaming Design in MATLAB

More About
• “Streaming Pixel Interface”

Introduced in R2015a

 clone

2-155

clone
System object: visionhdl.PixelsToFrame
Package: visionhdl

Create object having the same property values

Syntax

newP2F = clone(P2F)

Description

newP2F = clone(P2F) creates another instance of the PixelsToFrame System
object, P2F, that has the same property values. The new object is unlocked and contains
uninitialized states.

Input Arguments

P2F

visionhdl.PixelsToFrame System object

Output Arguments

newP2F

New PixelsToFrame System object that has the same property values as the original
object.

Introduced in R2015a

2 System Objects — Alphabetical List

2-156

isLocked
System object: visionhdl.PixelsToFrame
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(P2F)

Description

TF = isLocked(P2F) returns the locked status, TF, of the PixelsToFrame System
object, P2F.

Introduced in R2015a

 release

2-157

release
System object: visionhdl.PixelsToFrame
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(P2F)

Description

release(P2F) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

P2F

visionhdl.PixelsToFrame System object

Introduced in R2015a

2 System Objects — Alphabetical List

2-158

step
System object: visionhdl.PixelsToFrame
Package: visionhdl

Convert pixel stream to image frame

Syntax

[frm,validOut] = step(P2F,pixels,ctrlIn)

Description

[frm,validOut] = step(P2F,pixels,ctrlIn)

Converts a vector of pixel values representing a padded image, pixels, and an associated
vector of control structures, ctrlIn, to an image matrix, frm. The control structure
indicates the validity of each pixel and its location in the frame. The output image, frm is
valid if validOut is true.

See “Streaming Pixel Interface” for details of the pixel stream format.

Note: The object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, first call the release method to unlock the object.

Input Arguments

P2F

visionhdl.PixelsToFrame System object

pixels

Pixel values, specified as a P-by-NumComponents matrix, where:

 step

2-159

• P is the total number of pixels in the padded image, calculated as
TotalPixelsPerLine × TotalVideoLines

• NumComponents is the number of components used to express a single pixel

Set the size of the padded image using the VideoFormat property. If the number of
elements in pixels does not match that specified by VideoFormat, The object returns a
warning.

Supported data types:

• uint or int
• fixdt()

• logical

• double or single

ctrlIn

Control structures associated with the input pixels, specified as a P-by-1 vector. P is
the total number of pixels in the padded image, calculated as TotalPixelsPerLine ×
TotalVideoLines. Each structure contains five control signals indicating the validity
of the pixel and its location in the frame. See “Pixel Control Structure”. If the dimensions
indicated by ctrlIn do not match that specified by VideoFormat, the object returns a
warning.

Output Arguments

frm

Full-frame image, returned as an ActiveVideoLines-by-ActivePixelsPerLine-
by-NumComponents matrix, where:

• ActiveVideoLines is the height of the active image
• ActivePixelsPerLine is the width of the active image
• NumComponents is the number of components used to express a single pixel

Set the size of the active image using the VideoFormat property. The data type of the
pixel values is the same as pixels.

2 System Objects — Alphabetical List

2-160

validOut

Frame status, returned as a logical value. When validOut is true, the frame is
reassembled and ready for use.

Introduced in R2015a

3

Functions — Alphabetical List

3 Functions — Alphabetical List

3-2

getparamfromfrm2pix
Get frame format parameters from visionhdl.FrameToPixels System object

Syntax

[activePixelsPerLine,activeLines,numPixelsPerFrame] =

getparamfromfrm2pix(frm2pix)

Description

[activePixelsPerLine,activeLines,numPixelsPerFrame] =

getparamfromfrm2pix(frm2pix) returns video format parameters of a
visionhdl.FrameToPixels System object, frm2pix. The parameters returned are as
follows.

• activePixelsPerLine — pixels in one horizontal line of the active video frame. For
custom video formats, this corresponds to the ActivePixelsPerLine property.

• activeLines — number of horizontal lines in the active video frame. For custom video
formats, this corresponds to the ActiveVideoLines property.

• numPixelsPerFrame — number of pixels in the active video frame. For custom video
formats, this corresponds to ActiveVideoLines×ActivePixelsPerLine.

Examples
frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',64,...

 'ActiveVideoLines',48,...

 'TotalPixelsPerLine',84,...

 'TotalVideoLines',58,...

 'StartingActiveLine',5,...

 'FrontPorch',10);

[activePixels,activeLines,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix)

 getparamfromfrm2pix

3-3

activePixels =

 64

activeLines =

 48

numPixelsPerFrame =

 4096

More About
• “Streaming Pixel Interface”

See Also
Frame To Pixels | Pixels To Frame

3 Functions — Alphabetical List

3-4

pixelcontrolbus
Create control signal bus for use with Vision HDL Toolbox blocks

Syntax

pixelcontrolbus

Description

pixelcontrolbus is a script that declares a bus instance in the workspace. This
instance is necessary for HDL code generation from Vision HDL Toolbox blocks.

Examples

In the InitFcn callback function of your Simulink model, include this line to declare a
bus instance in the base workspace.

evalin('base','pixelcontrolbus');

More About
• “Streaming Pixel Interface”

See Also
“Pixel Control Bus” | Frame To Pixels | Pixels To Frame

 pixelcontrolsignals

3-5

pixelcontrolsignals
Extract signals from control signal structure used by Vision HDL Toolbox objects

Syntax
[hStart,hEnd,vStart,vEnd,valid] = pixelcontrolsignals(ctrl)

Description
[hStart,hEnd,vStart,vEnd,valid] = pixelcontrolsignals(ctrl) extracts
five scalar logical control signals from a structure. See “Pixel Control Structure”.

Examples
inputIm = imread('rice.png');

[imActiveLines, imActivePixels] = size(inputIm)

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',imActivePixels,...

 'ActiveVideoLines',imActiveLines,...

 'TotalPixelsPerLine',imActivePixels+20,...

 'TotalVideoLines',imActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',10);

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

[pixel,ctrl] = step(frm2pix,inputIm);

for p = 1:numPixelsPerFrame

 [hStart,hEnd,vStart,vEnd,valid] = pixelcontrolsignals(ctrl(p));

 % Call HDL-targeted function here.

 % Structures must be flattened to signals to support HDL code generation.

 ctrlOut(p) = pixelcontrolstruct(hStart,hEnd,vStart,vEnd,valid);

end

More About
• “Streaming Pixel Interface”

3 Functions — Alphabetical List

3-6

See Also
visionhdl.FrameToPixels | visionhdl.PixelsToFrame | pixelcontrolstruct

 pixelcontrolstruct

3-7

pixelcontrolstruct

Create control signal structure for use with Vision HDL Toolbox objects

Syntax

ctrl = pixelcontrolstruct(hStart,hEnd,vStart,vEnd,valid)

Description

ctrl = pixelcontrolstruct(hStart,hEnd,vStart,vEnd,valid) creates a
structure containing the five control signals used by Vision HDL Toolbox objects. The
input arguments must be five scalars of logical type. See “Pixel Control Structure”.

Examples

inputIm = imread('rice.png');

[imActiveLines, imActivePixels] = size(inputIm)

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',imActivePixels,...

 'ActiveVideoLines',imActiveLines,...

 'TotalPixelsPerLine',imActivePixels+20,...

 'TotalVideoLines',imActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',10);

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

[pixel,ctrl] = step(frm2pix,inputIm);

for p = 1:numPixelsPerFrame

 [hStart,hEnd,vStart,vEnd,valid] = pixelcontrolsignals(ctrl(p));

 % Call HDL-targeted function here.

 % Structures must be flattened to signals to support HDL code generation.

 ctrlOut(p) = pixelcontrolstruct(hStart,hEnd,vStart,vEnd,valid);

end

3 Functions — Alphabetical List

3-8

More About
• “Streaming Pixel Interface”

See Also
visionhdl.FrameToPixels | visionhdl.PixelsToFrame |
pixelcontrolsignals

